Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Missing Modality Robustness in Semi-Supervised Multi-Modal Semantic Segmentation (2304.10756v1)

Published 21 Apr 2023 in cs.CV and cs.LG

Abstract: Using multiple spatial modalities has been proven helpful in improving semantic segmentation performance. However, there are several real-world challenges that have yet to be addressed: (a) improving label efficiency and (b) enhancing robustness in realistic scenarios where modalities are missing at the test time. To address these challenges, we first propose a simple yet efficient multi-modal fusion mechanism Linear Fusion, that performs better than the state-of-the-art multi-modal models even with limited supervision. Second, we propose M3L: Multi-modal Teacher for Masked Modality Learning, a semi-supervised framework that not only improves the multi-modal performance but also makes the model robust to the realistic missing modality scenario using unlabeled data. We create the first benchmark for semi-supervised multi-modal semantic segmentation and also report the robustness to missing modalities. Our proposal shows an absolute improvement of up to 10% on robust mIoU above the most competitive baselines. Our code is available at https://github.com/harshm121/M3L

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Harsh Maheshwari (9 papers)
  2. Yen-Cheng Liu (26 papers)
  3. Zsolt Kira (110 papers)
Citations (10)