Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schooling to Exploit Foolish Contracts (2304.10737v2)

Published 21 Apr 2023 in cs.CR, cs.LG, and cs.SE

Abstract: We introduce SCooLS, our Smart Contract Learning (Semi-supervised) engine. SCooLS uses neural networks to analyze Ethereum contract bytecode and identifies specific vulnerable functions. SCooLS incorporates two key elements: semi-supervised learning and graph neural networks (GNNs). Semi-supervised learning produces more accurate models than unsupervised learning, while not requiring the large oracle-labeled training set that supervised learning requires. GNNs enable direct analysis of smart contract bytecode without any manual feature engineering, predefined patterns, or expert rules. SCooLS is the first application of semi-supervised learning to smart contract vulnerability analysis, as well as the first deep learning-based vulnerability analyzer to identify specific vulnerable functions. SCooLS's performance is better than existing tools, with an accuracy level of 98.4%, an F1 score of 90.5%, and an exceptionally low false positive rate of only 0.8%. Furthermore, SCooLS is fast, analyzing a typical function in 0.05 seconds. We leverage SCooLS's ability to identify specific vulnerable functions to build an exploit generator, which was successful in stealing Ether from 76.9% of the true positives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com