Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point-supervised Single-cell Segmentation via Collaborative Knowledge Sharing (2304.10671v2)

Published 20 Apr 2023 in cs.CV and q-bio.QM

Abstract: Despite their superior performance, deep-learning methods often suffer from the disadvantage of needing large-scale well-annotated training data. In response, recent literature has seen a proliferation of efforts aimed at reducing the annotation burden. This paper focuses on a weakly-supervised training setting for single-cell segmentation models, where the only available training label is the rough locations of individual cells. The specific problem is of practical interest due to the widely available nuclei counter-stain data in biomedical literature, from which the cell locations can be derived programmatically. Of more general interest is a proposed self-learning method called collaborative knowledge sharing, which is related to but distinct from the more well-known consistency learning methods. This strategy achieves self-learning by sharing knowledge between a principal model and a very light-weight collaborator model. Importantly, the two models are entirely different in their architectures, capacities, and model outputs: In our case, the principal model approaches the segmentation problem from an object-detection perspective, whereas the collaborator model a sematic segmentation perspective. We assessed the effectiveness of this strategy by conducting experiments on LIVECell, a large single-cell segmentation dataset of bright-field images, and on A431 dataset, a fluorescence image dataset in which the location labels are generated automatically from nuclei counter-stain data. Implementing code is available at https://github.com/jiyuuchc/lacss

Citations (5)

Summary

We haven't generated a summary for this paper yet.