Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensembling Instance and Semantic Segmentation for Panoptic Segmentation (2304.10326v1)

Published 20 Apr 2023 in cs.CV

Abstract: We demonstrate our solution for the 2019 COCO panoptic segmentation task. Our method first performs instance segmentation and semantic segmentation separately, then combines the two to generate panoptic segmentation results. To enhance the performance, we add several expert models of Mask R-CNN in instance segmentation to tackle the data imbalance problem in the training data; also HTC model is adopted yielding our best instance segmentation results. In semantic segmentation, we trained several models with various backbones and use an ensemble strategy which further boosts the segmentation results. In the end, we analyze various combinations of instance and semantic segmentation, and report on their performance for the final panoptic segmentation results. Our best model achieves $PQ$ 47.1 on 2019 COCO panoptic test-dev data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mehmet Yildirim (3 papers)
  2. Yogesh Langhe (2 papers)

Summary

We haven't generated a summary for this paper yet.