Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-destructive Fault Diagnosis of Electronic Interconnects by Learning Signal Patterns of Reflection Coefficient in the Frequency Domain (2304.10207v3)

Published 20 Apr 2023 in cs.LG

Abstract: Fault detection and diagnosis of the interconnects are crucial for prognostics and health management (PHM) of electronics. Traditional methods, which rely on electronic signals as prognostic factors, often struggle to accurately identify the root causes of defects without resorting to destructive testing. Furthermore, these methods are vulnerable to noise interference, which can result in false alarms. To address these limitations, in this paper, we propose a novel, non-destructive approach for early fault detection and accurate diagnosis of interconnect defects, with improved noise resilience. Our approach uniquely utilizes the signal patterns of the reflection coefficient across a range of frequencies, enabling both root cause identification and severity assessment. This approach departs from conventional time-series analysis and effectively transforms the signal data into a format suitable for advanced learning algorithms. Additionally, we introduce a novel severity rating ensemble learning (SREL) approach, which enhances diagnostic accuracy and robustness in noisy environments. Experimental results demonstrate that the proposed method is effective for fault detection and diagnosis and has the potential to extend to real-world industrial applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. K. Croes, C. Adelmann, C. J. Wilson, H. Zahedmanesh, O. V. Pedreira, C. Wu, A. Leśniewska, H. Oprins, S. Beyne, I. Ciofi et al., “Interconnect metals beyond copper: Reliability challenges and opportunities,” in 2018 IEEE International Electron Devices Meeting (IEDM).   IEEE, 2018, pp. 5–3.
  2. T. Y. Kang, D. Seo, J. Min, and T.-S. Kim, “Quantification of performance variation and crack evolution of bond-wire interconnects under harsh temperature environments by s-parameter analysis,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 6, pp. 990–998, 2021.
  3. Q. Liu and C. Huang, “A fault diagnosis method based on transfer convolutional neural networks,” IEEE Access, vol. 7, pp. 171 423–171 430, 2019.
  4. S. R. Saufi, Z. A. B. Ahmad, M. S. Leong, and M. H. Lim, “Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review,” Ieee Access, vol. 7, pp. 122 644–122 662, 2019.
  5. D. Kwon, M. H. Azarian, and M. Pecht, “Early detection of interconnect degradation by continuous monitoring of rf impedance,” IEEE Transactions on Device and Materials Reliability, vol. 9, no. 2, pp. 296–304, 2009.
  6. L. T. Hoai and A. H. Duong, “Fault detection on the transmission lines using the time domain reflectometry method basing on the analysis of reflected waveform,” in 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), 2016, pp. 241–245.
  7. S. Roy, M. K. Alam, F. Khan, J. Johnson, and J. Flicker, “An irradiance-independent, robust ground-fault detection scheme for pv arrays based on spread spectrum time-domain reflectometry (sstdr),” IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7046–7057, 2017.
  8. F. Auzanneau, N. Ravot, and L. Incarbone, “Chaos time domain reflectometry for online defect detection in noisy wired networks,” IEEE Sensors Journal, vol. 16, no. 22, pp. 8027–8034, 2016.
  9. M. K. Smail, L. Pichon, M. Olivas, F. Auzanneau, and M. Lambert, “Detection of defects in wiring networks using time domain reflectometry,” IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 2998–3001, 2010.
  10. M. Kruger, A. Middendorf, I. Ndip, N. F. Nissen, and H. Reichl, “Measurement and analysis of the impact of micrometer scale cracks on the rf performance and reliability of transmission lines,” in 2009 59th Electronic Components and Technology Conference.   IEEE, 2009, pp. 1277–1283.
  11. J. Putaala, T. Kangasvieri, O. Nousiainen, H. Jantunen, and M. Moilanen, “Detection of thermal cycling-induced failures in rf/microwave bga assemblies,” IEEE Transactions on electronics packaging manufacturing, vol. 31, no. 3, pp. 240–247, 2008.
  12. S. Foley, L. Floyd, and A. Mathewson, “A novel fast technique for detecting voiding damage in ic interconnects,” Microelectronics Reliability, vol. 40, no. 1, pp. 87–97, 2000.
  13. R. Ghaffarian, G. Nelson, M. Cooper, D. Lam, S. Strudler, A. Umdekar, K. Selk, B. Bjorndahl, and R. Duprey, “Thermal cycling test results of csp and rf package assemblies,” The Proceedings of Surface Mount International, Chicago, 2000.
  14. N. J. Jameson, “Analysis and impedance-based detection of electromagnetic coil insulation degradation,” Ph.D. dissertation, University of Maryland, College Park, 2019.
  15. D. Kwon, M. H. Azarian, and M. Pecht, “Remaining-life prediction of solder joints using rf impedance analysis and gaussian process regression,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5, no. 11, pp. 1602–1609, 2015.
  16. J. Lee and D. Kwon, “A digital technique for diagnosing interconnect degradation by using digital signal characteristics,” Microelectronics Journal, vol. 60, pp. 87–93, 2017.
  17. I. Shin, K. Koo, and D. Kwon, “Development of a non-invasive on-chip interconnect health sensing method based on bit error rates,” Sensors, vol. 18, no. 10, p. 3234, 2018.
  18. T. Y. Kang, D. Seo, Y. Park, J. Min, and T.-S. Kim, “Early detection and instantaneous cause analysis of defects in interconnects by machine learning (ranking-cnn) of scattering parameter patterns,” in International Symposium on Microelectronics, vol. 2019, no. 1.   International Microelectronics Assembly and Packaging Society, 2019, pp. 000 289–000 294.
  19. D. Kwon, “Detection of interconnect failure precursors using rf impedance analysis,” Ph.D. dissertation, 2010.
  20. A. S. Narwariya, P. Das, S. Khursheed, and A. Acharyya, “Operational age estimation of ics using gaussian process regression,” in 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).   IEEE, 2022, pp. 1–5.
  21. L. Gaber, A. I. Hussein, and M. Moness, “Fault detection based on deep learning for digital vlsi circuits,” Procedia Computer Science, vol. 194, pp. 122–131, 2021.
  22. H. Zhang, S. Krooswyk, and J. Ou, “Chapter 1 - transmission line fundamentals,” in High Speed Digital Design, H. Zhang, S. Krooswyk, and J. Ou, Eds.   Boston: Morgan Kaufmann, 2015, pp. 1–26. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780124186637000010
  23. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning.   PMLR, 2019, pp. 6105–6114.
  24. L. Eren, T. Ince, and S. Kiranyaz, “A generic intelligent bearing fault diagnosis system using compact adaptive 1d cnn classifier,” Journal of Signal Processing Systems, vol. 91, pp. 179–189, 2019.
  25. M. Xia, T. Li, L. Xu, L. Liu, and C. W. De Silva, “Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks,” IEEE/ASME transactions on mechatronics, vol. 23, no. 1, pp. 101–110, 2017.
  26. L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox,” Measurement, vol. 111, pp. 1–10, 2017.
  27. A. Chatzimparmpas, R. M. Martins, and A. Kerren, “t-visne: Interactive assessment and interpretation of t-sne projections,” IEEE transactions on visualization and computer graphics, vol. 26, no. 8, pp. 2696–2714, 2020.
  28. M. Kim, J. H. Jung, J. U. Ko, H. B. Kong, J. Lee, and B. D. Youn, “Direct connection-based convolutional neural network (dc-cnn) for fault diagnosis of rotor systems,” IEEE Access, vol. 8, pp. 172 043–172 056, 2020.
  29. Q. Wang, C. Taal, and O. Fink, “Integrating expert knowledge with domain adaptation for unsupervised fault diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2021.
  30. F. Aziz, A. U. Haq, S. Ahmad, Y. Mahmoud, M. Jalal, and U. Ali, “A novel convolutional neural network-based approach for fault classification in photovoltaic arrays,” IEEE Access, vol. 8, pp. 41 889–41 904, 2020.
  31. H. Tang, Z. Liao, P. Chen, D. Zuo, and S. Yi, “A robust deep learning network for low-speed machinery fault diagnosis based on multikernel and rpca,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 3, pp. 1522–1532, 2021.
  32. S. Chen, C. Zhang, M. Dong, J. Le, and M. Rao, “Using ranking-cnn for age estimation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5183–5192.
Citations (2)

Summary

We haven't generated a summary for this paper yet.