Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing the Domain Shift Immunity of Deep Homography Estimation (2304.09976v2)

Published 19 Apr 2023 in cs.CV

Abstract: Homography estimation serves as a fundamental technique for image alignment in a wide array of applications. The advent of convolutional neural networks has introduced learning-based methodologies that have exhibited remarkable efficacy in this realm. Yet, the generalizability of these approaches across distinct domains remains underexplored. Unlike other conventional tasks, CNN-driven homography estimation models show a distinctive immunity to domain shifts, enabling seamless deployment from one dataset to another without the necessity of transfer learning. This study explores the resilience of a variety of deep homography estimation models to domain shifts, revealing that the network architecture itself is not a contributing factor to this remarkable adaptability. By closely examining the models' focal regions and subjecting input images to a variety of modifications, we confirm that the models heavily rely on local textures such as edges and corner points for homography estimation. Moreover, our analysis underscores that the domain shift immunity itself is intricately tied to the utilization of these local textures.

Summary

We haven't generated a summary for this paper yet.