Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Scheduling for Edge-Assisted DNN Serving (2304.09961v2)

Published 19 Apr 2023 in cs.NI, cs.DC, and cs.LG

Abstract: Deep neural networks (DNNs) have been widely used in various video analytic tasks. These tasks demand real-time responses. Due to the limited processing power on mobile devices, a common way to support such real-time analytics is to offload the processing to an edge server. This paper examines how to speed up the edge server DNN processing for multiple clients. In particular, we observe batching multiple DNN requests significantly speeds up the processing time. Based on this observation, we first design a novel scheduling algorithm to exploit the batching benefits of all requests that run the same DNN. This is compelling since there are only a handful of DNNs and many requests tend to use the same DNN. Our algorithms are general and can support different objectives, such as minimizing the completion time or maximizing the on-time ratio. We then extend our algorithm to handle requests that use different DNNs with or without shared layers. Finally, we develop a collaborative approach to further improve performance by adaptively processing some of the requests or portions of the requests locally at the clients. This is especially useful when the network and/or server is congested. Our implementation shows the effectiveness of our approach under different request distributions (e.g., Poisson, Pareto, and Constant inter-arrivals).

Summary

We haven't generated a summary for this paper yet.