Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Codes Detecting Deletions in Concatenated Binary Strings Applied to Trace Reconstruction (2304.09839v1)

Published 19 Apr 2023 in cs.IT, cs.DM, and math.IT

Abstract: Consider two or more strings $\mathbf{x}1,\mathbf{x}2,\ldots,$ that are concatenated to form $\mathbf{x}=\langle \mathbf{x}1,\mathbf{x}2,\ldots \rangle$. Suppose that up to $\delta$ deletions occur in each of the concatenated strings. Since deletions alter the lengths of the strings, a fundamental question to ask is: how much redundancy do we need to introduce in $\mathbf{x}$ in order to recover the boundaries of $\mathbf{x}1,\mathbf{x}2,\ldots$? This boundary problem is equivalent to the problem of designing codes that can detect the exact number of deletions in each concatenated string. In this work, we answer the question above by first deriving converse results that give lower bounds on the redundancy of deletion-detecting codes. Then, we present a marker-based code construction whose redundancy is asymptotically optimal in $\delta$ among all families of deletion-detecting codes, and exactly optimal among all block-by-block decodable codes. To exemplify the usefulness of such deletion-detecting codes, we apply our code to trace reconstruction and design an efficient coded reconstruction scheme that requires a constant number of traces.

Summary

We haven't generated a summary for this paper yet.