Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Light-quark Yukawa couplings from off-shell Higgs production (2304.09772v2)

Published 19 Apr 2023 in hep-ph

Abstract: Yukawa couplings of the first quark generation are notoriously difficult to constrain due to their small values within the Standard Model. Here we propose Higgs off-shell production, with the Higgs boson decaying to four leptons, as a probe of the up- and down-quark Yukawa couplings. Using kinematic discriminants similar to the ones employed in the Higgs width measurements we find that the down (up) Yukawa coupling can be constrained to a factor of 156 (260) times its Standard Model value at the high-luminosity LHC assuming only experimental systematic uncertainties. Off-shell Higgs production hence provides better sensitivity to the first-generation quark Yukawa couplings with respect to other probes such as Higgs+jet or Higgs pair production.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 52–59, arXiv:2207.00092 [hep-ex].
  2. CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 60–68, arXiv:2207.00043 [hep-ex].
  3. ATLAS Collaboration, G. Aad et al., “A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector,” Phys. Lett. B 812 (2021) 135980, arXiv:2007.07830 [hep-ex].
  4. CMS Collaboration, A. M. Sirunyan et al., “Evidence for Higgs boson decay to a pair of muons,” JHEP 01 (2021) 148, arXiv:2009.04363 [hep-ex].
  5. J. de Blas et al., “Higgs Boson Studies at Future Particle Colliders,” JHEP 01 (2020) 139, arXiv:1905.03764 [hep-ph].
  6. ATLAS Collaboration, G. Aad et al., “Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector,” Eur. Phys. J. C 82 (2022) 717, arXiv:2201.11428 [hep-ex].
  7. CMS Collaboration, A. M. Sirunyan et al., “A search for the standard model Higgs boson decaying to charm quarks,” JHEP 03 (2020) 131, arXiv:1912.01662 [hep-ex].
  8. L. M. Carpenter, T. Han, K. Hendricks, Z. Qian, and N. Zhou, “Higgs Boson Decay to Light Jets at the LHC,” Phys. Rev. D 95 no. 5, (2017) 053003, arXiv:1611.05463 [hep-ph].
  9. G. Perez, Y. Soreq, E. Stamou, and K. Tobioka, “Prospects for measuring the Higgs boson coupling to light quarks,” Phys. Rev. D 93 no. 1, (2016) 013001, arXiv:1505.06689 [hep-ph].
  10. G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco, “Higgs boson decays to quarkonia and the H⁢c¯⁢c𝐻¯𝑐𝑐H\overline{c}citalic_H over¯ start_ARG italic_c end_ARG italic_c coupling,” Phys. Rev. D 88 no. 5, (2013) 053003, arXiv:1306.5770 [hep-ph].
  11. A. L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev, and J. Zupan, “Exclusive Window onto Higgs Yukawa Couplings,” Phys. Rev. Lett. 114 no. 10, (2015) 101802, arXiv:1406.1722 [hep-ph].
  12. M. König and M. Neubert, “Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings,” JHEP 08 (2015) 012, arXiv:1505.03870 [hep-ph].
  13. S. Alte, M. König, and M. Neubert, “Exclusive Weak Radiative Higgs Decays in the Standard Model and Beyond,” JHEP 12 (2016) 037, arXiv:1609.06310 [hep-ph].
  14. ATLAS Collaboration, M. Aaboud et al., “Searches for exclusive Higgs and Z𝑍Zitalic_Z boson decays into J/ψ⁢γ𝐽𝜓𝛾J/\psi\gammaitalic_J / italic_ψ italic_γ, ψ⁢(2⁢S)⁢γ𝜓2𝑆𝛾\psi(2S)\gammaitalic_ψ ( 2 italic_S ) italic_γ, and Υ⁢(n⁢S)⁢γΥ𝑛𝑆𝛾\Upsilon(nS)\gammaroman_Υ ( italic_n italic_S ) italic_γ at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Lett. B 786 (2018) 134–155, arXiv:1807.00802 [hep-ex].
  15. CMS Collaboration, “Search for Higgs boson decays into Z and J/ψ𝜓\psiitalic_ψ and for Higgs and Z boson decays into J/ψ𝜓\psiitalic_ψ or ΥΥ\Upsilonroman_Υ pairs in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” arXiv:2206.03525 [hep-ex].
  16. I. Brivio, F. Goertz, and G. Isidori, “Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production,” Phys. Rev. Lett. 115 no. 21, (2015) 211801, arXiv:1507.02916 [hep-ph].
  17. F. Bishara, U. Haisch, P. F. Monni, and E. Re, “Constraining Light-Quark Yukawa Couplings from Higgs Distributions,” Phys. Rev. Lett. 118 no. 12, (2017) 121801, arXiv:1606.09253 [hep-ph].
  18. N. Vignaroli, “Off-Shell Probes of the Higgs Yukawa Couplings: Light Quarks and Charm,” Symmetry 14 no. 6, (2022) 1183, arXiv:2205.09449 [hep-ph].
  19. J. Duarte-Campderros, G. Perez, M. Schlaffer, and A. Soffer, “Probing the Higgs–strange-quark coupling at e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT colliders using light-jet flavor tagging,” Phys. Rev. D 101 no. 11, (2020) 115005, arXiv:1811.09636 [hep-ph].
  20. J. A. Aguilar-Saavedra, J. M. Cano, and J. M. No, “More light on Higgs flavor at the LHC: Higgs boson couplings to light quarks through h+γℎ𝛾h+\gammaitalic_h + italic_γ production,” Phys. Rev. D 103 no. 9, (2021) 095023, arXiv:2008.12538 [hep-ph].
  21. Y. Soreq, H. X. Zhu, and J. Zupan, “Light quark Yukawa couplings from Higgs kinematics,” JHEP 12 (2016) 045, arXiv:1606.09621 [hep-ph].
  22. G. Bonner and H. E. Logan, “Constraining the Higgs couplings to up and down quarks using production kinematics at the CERN Large Hadron Collider,” arXiv:1608.04376 [hep-ph].
  23. L. Alasfar, R. Corral Lopez, and R. Gröber, “Probing Higgs couplings to light quarks via Higgs pair production,” JHEP 11 (2019) 088, arXiv:1909.05279 [hep-ph].
  24. L. Alasfar, R. Gröber, C. Grojean, A. Paul, and Z. Qian, “Machine learning the trilinear and light-quark Yukawa couplings from Higgs pair kinematic shapes,” JHEP 11 (2022) 045, arXiv:2207.04157 [hep-ph].
  25. A. Falkowski, S. Ganguly, P. Gras, J. M. No, K. Tobioka, N. Vignaroli, and T. You, “Light quark Yukawas in triboson final states,” JHEP 04 (2021) 023, arXiv:2011.09551 [hep-ph].
  26. F. Yu, “Light Quark Yukawa Couplings and the W±⁢hsuperscript𝑊plus-or-minusℎW^{\pm}hitalic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_h Charge Asymmetry,” Nucl. Part. Phys. Proc. 285-286 (2017) 123–125.
  27. F. Yu, “Phenomenology of Enhanced Light Quark Yukawa Couplings and the W±⁢hsuperscript𝑊plus-or-minusℎW^{\pm}hitalic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_h Charge Asymmetry,” JHEP 02 (2017) 083, arXiv:1609.06592 [hep-ph].
  28. Y. Zhou, “Constraining the Higgs boson coupling to light quarks in the H→Z⁢Z→𝐻𝑍𝑍H\rightarrow ZZitalic_H → italic_Z italic_Z final states,” Phys. Rev. D 93 no. 1, (2016) 013019, arXiv:1505.06369 [hep-ph].
  29. CMS Collaboration, A. Tumasyan et al., “Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production,” Nature Phys. 18 no. 11, (2022) 1329–1334, arXiv:2202.06923 [hep-ex].
  30. ATLAS Collaboration, G. Aad et al., “Evidence of off-shell Higgs boson production from Z⁢Z𝑍𝑍ZZitalic_Z italic_Z leptonic decay channels and constraints on its total width with the ATLAS detector,” arXiv:2304.01532 [hep-ex].
  31. N. Kauer and G. Passarino, “Inadequacy of zero-width approximation for a light Higgs boson signal,” JHEP 08 (2012) 116, arXiv:1206.4803 [hep-ph].
  32. F. Caola and K. Melnikov, “Constraining the Higgs boson width with ZZ production at the LHC,” Phys. Rev. D 88 (2013) 054024, arXiv:1307.4935 [hep-ph].
  33. J. M. Campbell, R. K. Ellis, and C. Williams, “Bounding the Higgs Width at the LHC Using Full Analytic Results for g⁢g−>e−⁢e+⁢μ−⁢μ+limit-from𝑔𝑔superscript𝑒superscript𝑒superscript𝜇superscript𝜇gg->e^{-}e^{+}\mu^{-}\mu^{+}italic_g italic_g - > italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT,” JHEP 04 (2014) 060, arXiv:1311.3589 [hep-ph].
  34. C. Englert and M. Spannowsky, “Limitations and Opportunities of Off-Shell Coupling Measurements,” Phys. Rev. D 90 (2014) 053003, arXiv:1405.0285 [hep-ph].
  35. C. Englert, Y. Soreq, and M. Spannowsky, “Off-Shell Higgs Coupling Measurements in BSM scenarios,” JHEP 05 (2015) 145, arXiv:1410.5440 [hep-ph].
  36. B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, “Dimension-Six Terms in the Standard Model Lagrangian,” JHEP 10 (2010) 085, arXiv:1008.4884 [hep-ph].
  37. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, and M. Spira, “Effective Lagrangian for a light Higgs-like scalar,” JHEP 07 (2013) 035, arXiv:1303.3876 [hep-ph].
  38. G. Blankenburg, J. Ellis, and G. Isidori, “Flavour-Changing Decays of a 125 GeV Higgs-like Particle,” Phys. Lett. B 712 (2012) 386–390, arXiv:1202.5704 [hep-ph].
  39. R. Harnik, J. Kopp, and J. Zupan, “Flavor Violating Higgs Decays,” JHEP 03 (2013) 026, arXiv:1209.1397 [hep-ph].
  40. E. E. Jenkins, A. V. Manohar, and M. Trott, “Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence,” JHEP 01 (2014) 035, arXiv:1310.4838 [hep-ph].
  41. D. Egana-Ugrinovic, S. Homiller, and P. Meade, “Aligned and Spontaneous Flavor Violation,” Phys. Rev. Lett. 123 no. 3, (2019) 031802, arXiv:1811.00017 [hep-ph].
  42. D. Egana-Ugrinovic, S. Homiller, and P. R. Meade, “Higgs bosons with large couplings to light quarks,” Phys. Rev. D 100 no. 11, (2019) 115041, arXiv:1908.11376 [hep-ph].
  43. S. Bar-Shalom and A. Soni, “Universally enhanced light-quarks Yukawa couplings paradigm,” Phys. Rev. D 98 no. 5, (2018) 055001, arXiv:1804.02400 [hep-ph].
  44. M. Cepeda et al., “Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC,” CERN Yellow Rep. Monogr. 7 (2019) 221–584, arXiv:1902.00134 [hep-ph].
  45. C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, and B. Mistlberger, “High precision determination of the gluon fusion Higgs boson cross-section at the LHC,” JHEP 05 (2016) 058, arXiv:1602.00695 [hep-ph].
  46. D. Dicus, T. Stelzer, Z. Sullivan, and S. Willenbrock, “Higgs boson production in association with bottom quarks at next-to-leading order,” Phys. Rev. D 59 (1999) 094016, arXiv:hep-ph/9811492.
  47. C. Balazs, H.-J. He, and C. P. Yuan, “QCD corrections to scalar production via heavy quark fusion at hadron colliders,” Phys. Rev. D 60 (1999) 114001, arXiv:hep-ph/9812263.
  48. R. V. Harlander and W. B. Kilgore, “Higgs boson production in bottom quark fusion at next-to-next-to leading order,” Phys. Rev. D 68 (2003) 013001, arXiv:hep-ph/0304035.
  49. A. Djouadi, J. Kalinowski, and M. Spira, “HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension,” Comput. Phys. Commun. 108 (1998) 56–74, arXiv:hep-ph/9704448.
  50. A. Djouadi, J. Kalinowski, M. Muehlleitner, and M. Spira, “HDECAY: Twenty++absent{}_{++}start_FLOATSUBSCRIPT + + end_FLOATSUBSCRIPT years after,” Comput. Phys. Commun. 238 (2019) 214–231, arXiv:1801.09506 [hep-ph].
  51. LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” arXiv:1610.07922 [hep-ph].
  52. ATLAS Collaboration, G. Aad et al., “Higgs boson production cross-section measurements and their EFT interpretation in the 4⁢ℓ4ℓ4\ell4 roman_ℓ decay channel at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV with the ATLAS detector,” Eur. Phys. J. C 80 no. 10, (2020) 957, arXiv:2004.03447 [hep-ex]. [Erratum: Eur.Phys.J.C 81, 29 (2021), Erratum: Eur.Phys.J.C 81, 398 (2021)].
  53. M. Vitti, Virtual QCD Corrections via a Transverse Momentum Expansion for Gluon-Initiated ZH and ZZ Production. PhD thesis, Rome III University, 2022.
  54. B. Mele, P. Nason, and G. Ridolfi, “QCD radiative corrections to Z boson pair production in hadronic collisions,” Nucl. Phys. B 357 (1991) 409–438.
  55. G. Panico, F. Riva, and A. Wulzer, “Diboson interference resurrection,” Phys. Lett. B 776 (2018) 473–480, arXiv:1708.07823 [hep-ph].
  56. A. Azatov, J. Elias-Miro, Y. Reyimuaji, and E. Venturini, “Novel measurements of anomalous triple gauge couplings for the LHC,” JHEP 10 (2017) 027, arXiv:1707.08060 [hep-ph].
  57. J. M. Campbell, R. K. Ellis, E. Furlan, and R. Röntsch, “Interference effects for Higgs boson mediated Z𝑍Zitalic_Z-pair plus jet production,” Phys. Rev. D 90 no. 9, (2014) 093008, arXiv:1409.1897 [hep-ph].
  58. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
  59. F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, and E. Weihs, “ZZ production at hadron colliders in NNLO QCD,” Phys. Lett. B 735 (2014) 311–313, arXiv:1405.2219 [hep-ph].
  60. M. Grazzini, S. Kallweit, and D. Rathlev, “ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD,” Phys. Lett. B 750 (2015) 407–410, arXiv:1507.06257 [hep-ph].
  61. G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, and J. Pires, “NNLO predictions for Z-boson pair production at the LHC,” JHEP 03 (2018) 142, arXiv:1710.06294 [hep-ph].
  62. D. A. Dicus, C. Kao, and W. W. Repko, “Gluon production of gauge bosons,” Phys. Rev. D 36 (Sep, 1987) 1570–1572.
  63. E. Glover and J. Van der Bij, “Z-boson pair production via gluon fusion,” Nuclear Physics B 321 no. 3, (1989) 561–590.
  64. U. Aglietti, R. Bonciani, G. Degrassi, and A. Vicini, “Analytic Results for Virtual QCD Corrections to Higgs Production and Decay,” JHEP 01 (2007) 021, arXiv:hep-ph/0611266.
  65. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo, and Z. Kunszt, “Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop,” JHEP 01 (2007) 082, arXiv:hep-ph/0611236.
  66. R. Harlander and P. Kant, “Higgs production and decay: Analytic results at next-to-leading order QCD,” JHEP 12 (2005) 015, arXiv:hep-ph/0509189.
  67. A. von Manteuffel and L. Tancredi, “The two-loop helicity amplitudes for g⁢g→V1⁢V2→4⁢leptons→𝑔𝑔subscript𝑉1subscript𝑉2→4leptonsgg\to V_{1}V_{2}\to 4~{}\mathrm{leptons}italic_g italic_g → italic_V start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT → 4 roman_leptons,” JHEP 06 (2015) 197, arXiv:1503.08835 [hep-ph].
  68. F. Caola, K. Melnikov, R. Röntsch, and L. Tancredi, “QCD corrections to ZZ production in gluon fusion at the LHC,” Phys. Rev. D 92 no. 9, (2015) 094028, arXiv:1509.06734 [hep-ph].
  69. B. Agarwal, S. P. Jones, and A. von Manteuffel, “Two-loop helicity amplitudes for g⁢g→Z⁢Z→𝑔𝑔𝑍𝑍gg\to ZZitalic_g italic_g → italic_Z italic_Z with full top-quark mass effects,” JHEP 05 (2021) 256, arXiv:2011.15113 [hep-ph].
  70. C. Brønnum-Hansen and C.-Y. Wang, “Top quark contribution to two-loop helicity amplitudes for Z𝑍Zitalic_Z boson pair production in gluon fusion,” JHEP 05 (2021) 244, arXiv:2101.12095 [hep-ph].
  71. U. Haisch and G. Koole, “Off-shell Higgs production at the LHC as a probe of the trilinear Higgs coupling,” JHEP 02 (2022) 030, arXiv:2111.12589 [hep-ph].
  72. L. Buonocore, G. Koole, D. Lombardi, L. Rottoli, M. Wiesemann, and G. Zanderighi, “ZZ production at nNNLO+PS with MiNNLOP⁢S𝑃𝑆{}_{PS}start_FLOATSUBSCRIPT italic_P italic_S end_FLOATSUBSCRIPT,” JHEP 01 (2022) 072, arXiv:2108.05337 [hep-ph].
  73. NNPDF Collaboration, R. D. Ball et al., “The path to proton structure at 1% accuracy,” Eur. Phys. J. C 82 no. 5, (2022) 428, arXiv:2109.02653 [hep-ph].
  74. ATLAS Collaboration, “Evidence of off-shell Higgs boson production and constraints on the total width of the Higgs boson in the Z⁢Z→4⁢ℓ→𝑍𝑍4ℓZZ\rightarrow 4\ellitalic_Z italic_Z → 4 roman_ℓ and Z⁢Z→2⁢ℓ⁢2⁢ν→𝑍𝑍2ℓ2𝜈ZZ\rightarrow 2\ell 2\nuitalic_Z italic_Z → 2 roman_ℓ 2 italic_ν decay channels with the ATLAS detector,” tech. rep., CERN, Geneva, 2022. https://cds.cern.ch/record/2842520.
  75. ATLAS Collaboration, M. Aaboud et al., “Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector,” JHEP 04 (2019) 048, arXiv:1902.05892 [hep-ex].
  76. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. [Erratum: Eur.Phys.J.C 73, 2501 (2013)].
  77. ATLAS Collaboration, “Projections for measurements of Higgs boson cross sections, branching ratios, coupling parameters and mass with the ATLAS detector at the HL-LHC,” tech. rep., CERN, Geneva, 2018. https://cds.cern.ch/record/2652762.
  78. CMS Collaboration, “Sensitivity projections for Higgs boson properties measurements at the HL-LHC,” tech. rep., CERN, Geneva, 2018. https://cds.cern.ch/record/2647699.
  79. I. Brivio et al., “Truncation, validity, uncertainties,” arXiv:2201.04974 [hep-ph].
Citations (4)

Summary

We haven't generated a summary for this paper yet.