Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions (2304.09757v2)
Abstract: In this paper we analyse functions in Besov spaces $B{1/q}_{q,\infty}(\mathbb{R}N,\mathbb{R}d),q\in (1,\infty)$, and functions in fractional Sobolev spaces $W{r,q}(\mathbb{R}N,\mathbb{R}d),r\in (0,1),q\in [1,\infty)$. We prove for Besov functions $u\in B{1/q}_{q,\infty}(\mathbb{R}N,\mathbb{R}d)$ the summability of the difference between one-sided approximate limits in power $q$, $|u+-u-|q$, along the jump set $\mathcal{J}u$ of $u$ with respect to Hausdorff measure $\mathcal{H}{N-1}$, and establish the best bound from above on the integral $\int{\mathcal{J}u}|u+-u-|qd\mathcal{H}{N-1}$ in terms of Besov constants. We show for functions $u\in B{1/q}{q,\infty}(\mathbb{R}N,\mathbb{R}d),q\in (1,\infty)$ that \begin{equation} \liminf\limits_{\varepsilon \to 0+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|qdz=0 \end{equation} for every $x$ outside of a $\mathcal{H}{N-1}$-sigma finite set. For fractional Sobolev functions $u\in W{r,q}(\mathbb{R}N,\mathbb{R}d)$ we prove that \begin{equation} \lim_{\rho\to 0+}\fint_{B_{\rho}(x)}\fint_{B_{\rho}(x)} |u\big(z\big)-u(y)|qdzdy=0 \end{equation} for $\mathcal{H}{N-rq}$ a.e. $x$, where $q\in[1,\infty)$, $r\in(0,1)$ and $rq\leq N$. We prove for $u\in W{1,q}(\mathbb{R}N),1<q\leq N$, that \begin{equation} \lim\limits_{\varepsilon\to 0+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|qdz=0 \end{equation} for $\mathcal{H}{N-q}$ a.e. $x\in \mathbb{R}N$.