Papers
Topics
Authors
Recent
Search
2000 character limit reached

Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions

Published 14 Apr 2023 in math.CA, math.AP, and math.FA | (2304.09757v2)

Abstract: In this paper we analyse functions in Besov spaces $B{1/q}_{q,\infty}(\mathbb{R}N,\mathbb{R}d),q\in (1,\infty)$, and functions in fractional Sobolev spaces $W{r,q}(\mathbb{R}N,\mathbb{R}d),r\in (0,1),q\in [1,\infty)$. We prove for Besov functions $u\in B{1/q}_{q,\infty}(\mathbb{R}N,\mathbb{R}d)$ the summability of the difference between one-sided approximate limits in power $q$, $|u+-u-|q$, along the jump set $\mathcal{J}u$ of $u$ with respect to Hausdorff measure $\mathcal{H}{N-1}$, and establish the best bound from above on the integral $\int{\mathcal{J}u}|u+-u-|qd\mathcal{H}{N-1}$ in terms of Besov constants. We show for functions $u\in B{1/q}{q,\infty}(\mathbb{R}N,\mathbb{R}d),q\in (1,\infty)$ that \begin{equation} \liminf\limits_{\varepsilon \to 0+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|qdz=0 \end{equation} for every $x$ outside of a $\mathcal{H}{N-1}$-sigma finite set. For fractional Sobolev functions $u\in W{r,q}(\mathbb{R}N,\mathbb{R}d)$ we prove that \begin{equation} \lim_{\rho\to 0+}\fint_{B_{\rho}(x)}\fint_{B_{\rho}(x)} |u\big(z\big)-u(y)|qdzdy=0 \end{equation} for $\mathcal{H}{N-rq}$ a.e. $x$, where $q\in[1,\infty)$, $r\in(0,1)$ and $rq\leq N$. We prove for $u\in W{1,q}(\mathbb{R}N),1<q\leq N$, that \begin{equation} \lim\limits_{\varepsilon\to 0+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|qdz=0 \end{equation} for $\mathcal{H}{N-q}$ a.e. $x\in \mathbb{R}N$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.