Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLIC: Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (2304.09571v9)

Published 19 Apr 2023 in cs.CV, cs.MM, and eess.IV

Abstract: The effective receptive field (ERF) plays an important role in transform coding, which determines how much redundancy can be removed during transform and how many spatial priors can be utilized to synthesize textures during inverse transform. Existing methods rely on stacks of small kernels, whose ERFs remain insufficiently large, or heavy non-local attention mechanisms, which limit the potential of high-resolution image coding. To tackle this issue, we propose Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (LLIC). Specifically, for the first time in the learned image compression community, we introduce a few large kernelbased depth-wise convolutions to reduce more redundancy while maintaining modest complexity. Due to the wide range of image diversity, we further propose a mechanism to augment convolution adaptability through the self-conditioned generation of weights. The large kernels cooperate with non-linear embedding and gate mechanisms for better expressiveness and lighter pointwise interactions. Our investigation extends to refined training methods that unlock the full potential of these large kernels. Moreover, to promote more dynamic inter-channel interactions, we introduce an adaptive channel-wise bit allocation strategy that autonomously generates channel importance factors in a self-conditioned manner. To demonstrate the effectiveness of the proposed transform coding, we align the entropy model to compare with existing transform methods and obtain models LLIC-STF, LLIC-ELIC, and LLIC-TCM. Extensive experiments demonstrate that our proposed LLIC models have significant improvements over the corresponding baselines and reduce the BD-Rate by 9.49%, 9.47%, 10.94% on Kodak over VTM-17.0 Intra, respectively. Our LLIC models achieve state-of-the-art performances and better trade-offs between performance and complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Wei Jiang (343 papers)
  2. Peirong Ning (4 papers)
  3. Jiayu Yang (32 papers)
  4. Yongqi Zhai (12 papers)
  5. Feng Gao (240 papers)
  6. Ronggang Wang (45 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.