Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Objective-Tailored Genetic Improvement Through Large Language Models (2304.09386v1)

Published 19 Apr 2023 in cs.SE

Abstract: While Genetic Improvement (GI) is a useful paradigm to improve functional and nonfunctional aspects of software, existing techniques tended to use the same set of mutation operators for differing objectives, due to the difficulty of writing custom mutation operators. In this work, we suggest that LLMs can be used to generate objective-tailored mutants, expanding the possibilities of software optimizations that GI can perform. We further argue that LLMs and the GI process can benefit from the strengths of one another, and present a simple example demonstrating that LLMs can both improve the effectiveness of the GI optimization process, while also benefiting from the evaluation steps of GI. As a result, we believe that the combination of LLMs and GI has the capability to significantly aid developers in optimizing their software.

Citations (7)

Summary

We haven't generated a summary for this paper yet.