Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data Driven Sequential Learning Framework to Accelerate and Optimize Multi-Objective Manufacturing Decisions (2304.09278v1)

Published 18 Apr 2023 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: Manufacturing advanced materials and products with a specific property or combination of properties is often warranted. To achieve that it is crucial to find out the optimum recipe or processing conditions that can generate the ideal combination of these properties. Most of the time, a sufficient number of experiments are needed to generate a Pareto front. However, manufacturing experiments are usually costly and even conducting a single experiment can be a time-consuming process. So, it's critical to determine the optimal location for data collection to gain the most comprehensive understanding of the process. Sequential learning is a promising approach to actively learn from the ongoing experiments, iteratively update the underlying optimization routine, and adapt the data collection process on the go. This paper presents a novel data-driven Bayesian optimization framework that utilizes sequential learning to efficiently optimize complex systems with multiple conflicting objectives. Additionally, this paper proposes a novel metric for evaluating multi-objective data-driven optimization approaches. This metric considers both the quality of the Pareto front and the amount of data used to generate it. The proposed framework is particularly beneficial in practical applications where acquiring data can be expensive and resource intensive. To demonstrate the effectiveness of the proposed algorithm and metric, the algorithm is evaluated on a manufacturing dataset. The results indicate that the proposed algorithm can achieve the actual Pareto front while processing significantly less data. It implies that the proposed data-driven framework can lead to similar manufacturing decisions with reduced costs and time.

Citations (7)

Summary

We haven't generated a summary for this paper yet.