Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error bounds for maxout neural network approximations of model predictive control (2304.08779v2)

Published 18 Apr 2023 in eess.SY, cs.SY, and math.OC

Abstract: Neural network (NN) approximations of model predictive control (MPC) are a versatile approach if the online solution of the underlying optimal control problem (OCP) is too demanding and if an exact computation of the explicit MPC law is intractable. The drawback of such approximations is that they typically do not preserve stability and performance guarantees of the original MPC. However, such guarantees can be recovered if the maximum error with respect to the optimal control law and the Lipschitz constant of that error are known. We show in this work how to compute both values exactly when the control law is approximated by a maxout NN. We build upon related results for ReLU NN approximations and derive mixed-integer (MI) linear constraints that allow a computation of the output and the local gain of a maxout NN by solving an MI feasibility problem. Furthermore, we show theoretically and experimentally that maxout NN exist for which the maximum error is zero.

Citations (4)

Summary

We haven't generated a summary for this paper yet.