Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cashew dataset generation using augmentation and RaLSGAN and a transfer learning based tinyML approach towards disease detection (2304.08766v1)

Published 18 Apr 2023 in eess.IV

Abstract: Cashew is one of the most extensively consumed nuts in the world, and it is also known as a cash crop. A tree may generate a substantial yield in a few months and has a lifetime of around 70 to 80 years. Yet, in addition to the benefits, there are certain constraints to its cultivation. With the exception of parasites and algae, anthracnose is the most common disease affecting trees. When it comes to cashew, the dense structure of the tree makes it difficult to diagnose the disease with ease compared to short crops. Hence, we present a dataset that exclusively consists of healthy and diseased cashew leaves and fruits. The dataset is authenticated by adding RGB color transformation to highlight diseased regions, photometric and geometric augmentations, and RaLSGAN to enlarge the initial collection of images and boost performance in real-time situations when working with a constrained dataset. Further, transfer learning is used to test the classification efficiency of the dataset using algorithms such as MobileNet and Inception. TensorFlow lite is utilized to develop these algorithms for disease diagnosis utilizing drones in real-time. Several post-training optimization strategies are utilized, and their memory size is compared. They have proven their effectiveness by delivering high accuracy (up to 99%) and a decrease in memory and latency, making them ideal for use in applications with limited resources.

Citations (3)

Summary

We haven't generated a summary for this paper yet.