Root-$T \overline{T}$ Deformed Boundary Conditions in Holography (2304.08723v3)
Abstract: We develop the holographic dictionary for pure $\mathrm{AdS}_3$ gravity where the Lagrangian of the dual $2d$ conformal field theory has been deformed by an arbitrary function of the energy-momentum tensor. In addition to the $T \overline{T}$ deformation, examples of such functions include a class of marginal stress tensor deformations which are special because they leave the generating functional of connected correlators unchanged up to a redefinition of the source and expectation value. Within this marginal class, we identify the unique deformation that commutes with the $T \overline{T}$ flow, which is the root-$T \overline{T}$ operator, and write down the modified boundary conditions corresponding to this root-$T \overline{T}$ deformation. We also identify the unique marginal stress tensor flow for the cylinder spectrum of the dual CFT which commutes with the inviscid Burgers' flow driven by $T \overline{T}$, and we propose this unique flow as a candidate root-$T \overline{T}$ deformation of the energy levels. We study BTZ black holes in $\mathrm{AdS}_3$ subject to root-$T \overline{T}$ deformed boundary conditions, and find that their masses flow in a way which is identical to that of our candidate root-$T \overline{T}$ energy flow equation, which offers evidence that this flow is the correct one. Finally, we also obtain the root-$T \overline{T}$ deformed boundary conditions for the gauge field in the Chern-Simons formulation of $\mathrm{AdS}_3$ gravity.
- E. Witten, “Multitrace operators, boundary conditions, and AdS/CFTAdSCFT\mathrm{AdS}/\mathrm{CFT}roman_AdS / roman_CFT correspondence,” hep-th/0112258.
- A. B. Zamolodchikov, “Expectation value of composite field T anti-T in two-dimensional quantum field theory,” hep-th/0401146.
- F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B915 (2017) 363–383, 1608.05499.
- A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, 1608.05534.
- R. Conti, L. Iannella, S. Negro, and R. Tateo, “Generalised Born-Infeld models, Lax operators and the TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation,” JHEP 11 (2018) 007, 1806.11515.
- B. Chen, J. Hou, and J. Tian, “Lax connections in TT-deformed integrable field theories,” Chin. Phys. C 45 (2021), no. 9, 093112, 2102.01470.
- M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli, and H. Walsh, “On TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and supersymmetry,” JHEP 06 (2019) 063, 1811.00533.
- C.-K. Chang, C. Ferko, and S. Sethi, “Supersymmetry and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations,” JHEP 04 (2019) 131, 1811.01895.
- H. Jiang, A. Sfondrini, and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations with 𝒩=(0,2)𝒩02\mathcal{N}=(0,2)caligraphic_N = ( 0 , 2 ) supersymmetry,” Phys. Rev. D100 (2019), no. 4, 046017, 1904.04760.
- C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini, and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows and (2,2) supersymmetry,” Phys. Rev. D 101 (2020), no. 2, 026008, 1906.00467.
- C. Ferko, H. Jiang, S. Sethi, and G. Tartaglino-Mazzucchelli, “Non-linear supersymmetry and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows,” JHEP 02 (2020) 016, 1910.01599.
- PhD thesis, Chicago U., 2021. 2112.14647.
- S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations of supersymmetric quantum mechanics,” JHEP 08 (2022) 121, 2204.05897.
- S. Dubovsky, V. Gorbenko, and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09 (2017) 136, 1706.06604.
- J. Cardy, “The TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10 (2018) 186, 1801.06895.
- S. Datta and Y. Jiang, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08 (2018) 106, 1806.07426.
- O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and uniqueness of TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01 (2019) 086, 1808.02492.
- M. Guica and R. Monten, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10 (2021), no. 2, 024, 1906.11251.
- C. Ferko, A. Sfondrini, L. Smith, and G. Tartaglino-Mazzucchelli, “Root-TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations in Two-Dimensional Quantum Field Theories,” Phys. Rev. Lett. 129 (2022), no. 20, 201604, 2206.10515.
- R. Borsato, C. Ferko, and A. Sfondrini, “On the Classical Integrability of Root-TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Flows,” 2209.14274.
- I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102 (2020) 121703, 2007.09092.
- I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “On p-form gauge theories and their conformal limits,” JHEP 03 (2021) 022, 2012.09286.
- I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “ModMax meets Susy,” JHEP 10 (2021) 031, 2106.07547.
- K. Lechner, P. Marchetti, A. Sainaghi, and D. P. Sorokin, “Maximally symmetric nonlinear extension of electrodynamics and charged particles,” Phys. Rev. D 106 (2022), no. 1, 016009, 2206.04657.
- H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta, and H. Mohammadzadeh, “Emergence of non-linear electrodynamic theories from TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformations,” 2202.11156.
- C. Ferko, L. Smith, and G. Tartaglino-Mazzucchelli, “On Current-Squared Flows and ModMax Theories,” SciPost Phys. 13 (2022), no. 2, 012, 2203.01085.
- C. Ferko, L. Smith, and G. Tartaglino-Mazzucchelli, “Stress Tensor Flows, Birefringence in Non-Linear Electrodynamics, and Supersymmetry,” 2301.10411.
- C. Ferko, Y. Hu, Z. Huang, K. Koutrolikos, and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-Like Flows and 3d3𝑑3d3 italic_d Nonlinear Supersymmetry,” 2302.10410.
- H. Babaei-Aghbolagh, K. Babaei Velni, D. Mahdavian Yekta, and H. Mohammadzadeh, “Marginal TT¯-like deformation and modified Maxwell theories in two dimensions,” Phys. Rev. D 106 (2022), no. 8, 086022, 2206.12677.
- R. Conti, J. Romano, and R. Tateo, “Metric approach to a TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-like deformation in arbitrary dimensions,” JHEP 09 (2022) 085, 2206.03415.
- J. A. García and R. A. Sánchez-Isidro, “TT¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG-deformed oscillator inspired by ModMax,” Eur. Phys. J. Plus 138 (2023), no. 2, 114, 2209.06296.
- P. Rodríguez, D. Tempo, and R. Troncoso, “Mapping relativistic to ultra/non-relativistic conformal symmetries in 2D and finite TT¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations,” JHEP 11 (2021) 133, 2106.09750.
- A. Bagchi, A. Banerjee, and H. Muraki, “Boosting to BMS,” JHEP 09 (2022) 251, 2205.05094.
- D. Tempo and R. Troncoso, “Nonlinear automorphism of the conformal algebra in 2D and continuous TT¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations,” JHEP 12 (2022) 129, 2210.00059.
- J. Hou, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG flow as characteristic flows,” JHEP 03 (2023) 243, 2208.05391.
- S. S. Gubser and I. R. Klebanov, “A Universal result on central charges in the presence of double trace deformations,” Nucl. Phys. B 656 (2003) 23–36, hep-th/0212138.
- I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry breaking,” Nucl. Phys. B 556 (1999) 89–114, hep-th/9905104.
- M. Berkooz, A. Sever, and A. Shomer, “’Double trace’ deformations, boundary conditions and space-time singularities,” JHEP 05 (2002) 034, hep-th/0112264.
- W. Mueck, “An Improved correspondence formula for AdS / CFT with multitrace operators,” Phys. Lett. B 531 (2002) 301–304, hep-th/0201100.
- D. E. Diaz and H. Dorn, “Partition functions and double-trace deformations in AdS/CFT,” JHEP 05 (2007) 046, hep-th/0702163.
- T. Hartman and L. Rastelli, “Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT,” JHEP 01 (2008) 019, hep-th/0602106.
- S. S. Gubser and I. Mitra, “Double trace operators and one loop vacuum energy in AdS / CFT,” Phys. Rev. D 67 (2003) 064018, hep-th/0210093.
- I. Papadimitriou, “Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT,” JHEP 05 (2007) 075, hep-th/0703152.
- A. Bzowski and M. Guica, “The holographic interpretation of JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 01 (2019) 198, 1803.09753.
- M. Guica, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations and holography,” CERN Winter School on Supergravity, Strings and Gauge Theory (2020).
- K. Nguyen, “Holographic boundary actions in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT revisited,” JHEP 10 (2021) 218, 2108.01095.
- S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, 1988.
- J. D. Brown and J. W. York, “Quasilocal energy and conserved charges derived from the gravitational action,” Phys. Rev. D 47 (Feb, 1993) 1407–1419.
- R. Conti, S. Negro, and R. Tateo, “The TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation,” JHEP 02 (2019) 085, 1809.09593.
- V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50 (1994) 846–864, gr-qc/9403028.
- R. M. Wald and A. Zoupas, “A General definition of ‘conserved quantities’ in general relativity and other theories of gravity,” Phys. Rev. D 61 (2000) 084027, gr-qc/9911095.
- P. Kraus, “Lectures on black holes and the AdS(3) / CFT(2) correspondence,” Lect. Notes Phys. 755 (2008) 193–247, hep-th/0609074.
- L. Donnay, “Asymptotic dynamics of three-dimensional gravity,” PoS Modave2015 (2016) 001, 1602.09021.
- G. Compère and A. Fiorucci, “Advanced Lectures on General Relativity,” 1801.07064.
- C. Fefferman and C. R. Graham, “Conformal invariants,” Astérisque (1985).
- K. Skenderis and S. N. Solodukhin, “Quantum effective action from the AdS / CFT correspondence,” Phys. Lett. B 472 (2000) 316–322, hep-th/9910023.
- J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207–226.
- V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity,” Commun. Math. Phys. 208 (1999) 413–428, hep-th/9902121.
- S. de Haro, S. N. Solodukhin, and K. Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence,” Commun. Math. Phys. 217 (2001) 595–622, hep-th/0002230.
- M. He and Y.-h. Gao, “TT¯/JT¯𝑇¯𝑇𝐽¯𝑇T\bar{T}/J\bar{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed WZW models from Chern-Simons AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT gravity with mixed boundary conditions,” Phys. Rev. D 103 (2021), no. 12, 126019, 2012.05726.
- M. Banados, “Three-dimensional quantum geometry and black holes,” AIP Conf. Proc. 484 (1999), no. 1, 147–169, hep-th/9901148.
- C. Ferko and S. Sethi, “Sequential Flows by Irrelevant Operators,” 2206.04787.
- S. Chakraborty, A. Giveon, and D. Kutasov, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG, TJ¯𝑇¯𝐽T\bar{J}italic_T over¯ start_ARG italic_J end_ARG and String Theory,” 1905.00051.
- L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, 1611.03470.
- T. Hartman, J. Kruthoff, E. Shaghoulian, and A. Tajdini, “Holography at finite cutoff with a T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT deformation,” JHEP 03 (2019) 004, 1807.11401.
- A. Achucarro and P. K. Townsend, “A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories,” Phys. Lett. B 180 (1986) 89.
- E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.
- T. Regge and C. Teitelboim, “Role of Surface Integrals in the Hamiltonian Formulation of General Relativity,” Annals Phys. 88 (1974) 286.
- O. Coussaert, M. Henneaux, and P. van Driel, “The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant,” Class. Quant. Grav. 12 (1995) 2961–2966, gr-qc/9506019.
- J. de Boer and J. I. Jottar, “Thermodynamics of higher spin black holes in AdS3𝐴𝑑subscript𝑆3AdS_{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT,” JHEP 01 (2014) 023, 1302.0816.
- S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG in JT Gravity and BF Gauge Theory,” SciPost Phys. 13 (2022), no. 4, 096, 2205.07817.
- E. Llabrés, “General solutions in Chern-Simons gravity and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformations,” JHEP 01 (2021) 039, 1912.13330.
- P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018) 027, 1801.02714.
- S. Ebert, E. Hijano, P. Kraus, R. Monten, and R. M. Myers, “Field Theory of Interacting Boundary Gravitons,” SciPost Phys. 13 (2022), no. 2, 038, 2201.01780.
- J. L. Cardy, “Operator Content of Two-Dimensional Conformally Invariant Theories,” Nucl. Phys. B 270 (1986) 186–204.
- T. Hartman, C. A. Keller, and B. Stoica, “Universal Spectrum of 2d Conformal Field Theory in the Large c Limit,” JHEP 09 (2014) 118, 1405.5137.
- S. Pal and Z. Sun, “Tauberian-Cardy formula with spin,” JHEP 01 (2020) 135, 1910.07727.
- To appear.
- M. Guica, T. Hartman, W. Song, and A. Strominger, “The Kerr/CFT Correspondence,” Phys. Rev. D80 (2008) 124008, 0809.4266.