Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On some congruences and exponential sums (2304.08689v1)

Published 18 Apr 2023 in math.NT

Abstract: Let $\varepsilon>0$ be a fixed small constant, ${\mathbb F}_p$ be the finite field of $p$ elements for prime $p$. We consider additive and multiplicative problems in ${\mathbb F}_p$ that involve intervals and arbitrary sets. Representative examples of our results are as follows. Let ${\mathcal M}$ be an arbitrary subset of ${\mathbb F}_p$. If $#{\mathcal M} >p{1/3+\varepsilon}$ and $H\ge p{2/3}$ or if $#{\mathcal M} >p{3/5+\varepsilon}$ and $H\ge p{3/5+\varepsilon}$ then all, but $O(p{1-\delta})$ elements of ${\mathbb F}_p$ can be represented in the form $hm$ with $h\in [1, H]$ and $m\in {\mathcal M}$, where $\delta> 0$ depends only on $\varepsilon$. Furthermore, let $ {\mathcal X}$ be an arbitrary interval of length $H$ and $s$ be a fixed positive integer. If $$ H> p{17/35+\varepsilon}, \quad #{\mathcal M} > p{17/35+\varepsilon}. $$ then the number $T_6(\lambda)$ of solutions of the congruence $$ \frac{m_1}{x_1s}+ \frac{m_2}{x_2s}+ \frac{m_3}{x_3s}+\frac{m_4}{x_4s}+ \frac{m_5}{x_5s}+\frac{m_6}{x_6s} \equiv \lambda\mod p, \qquad m_i\in {\mathcal M}, \quad \ x_i \in {\mathcal X}, \quad i =1, \ldots, 6, $$ satisfies $$ T_6(\lambda)=\frac{H6(#{\mathcal M})6}{p}\left(1+O(p{-\delta})\right), $$ where $\delta> 0$ depends only on $s$ and $\varepsilon$.

Summary

We haven't generated a summary for this paper yet.