Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU (2304.08662v1)

Published 17 Apr 2023 in cs.DC and q-bio.GN

Abstract: Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence alignment problem is fundamental in bioinformatics; we have implemented the $X$-Drop algorithm, a heuristic method for pairwise alignment that reduces search space, on the Graphcore Intelligence Processor Unit (IPU) accelerator. The $X$-Drop algorithm has an irregular computational pattern, which makes it difficult to accelerate due to load balancing. Here, we introduce a graph-based partitioning and queue-based batch system to improve load balancing. Our implementation achieves $10\times$ speedup over a state-of-the-art GPU implementation and up to $4.65\times$ compared to CPU. In addition, we introduce a memory-restricted $X$-Drop algorithm that reduces memory footprint by $55\times$ and efficiently uses the IPU's limited low-latency SRAM. This optimization further improves the strong scaling performance by $3.6\times$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.