Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-Efficient Lane Changes Planning and Control for Connected Autonomous Vehicles on Urban Roads (2304.08576v2)

Published 17 Apr 2023 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents a novel energy-efficient motion planning algorithm for Connected Autonomous Vehicles (CAVs) on urban roads. The approach consists of two components: a decision-making algorithm and an optimization-based trajectory planner. The decision-making algorithm leverages Signal Phase and Timing (SPaT) information from connected traffic lights to select a lane with the aim of reducing energy consumption. The algorithm is based on a heuristic rule which is learned from human driving data. The optimization-based trajectory planner generates a safe, smooth, and energy-efficient trajectory toward the selected lane. The proposed strategy is experimentally evaluated in a Vehicle-in-the-Loop (VIL) setting, where a real test vehicle receives SPaT information from both actual and virtual traffic lights and autonomously drives on a testing site, while the surrounding vehicles are simulated. The results demonstrate that the use of SPaT information in autonomous driving leads to improved energy efficiency, with the proposed strategy saving 37.1% energy consumption compared to a lane-keeping algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated vehicles: State of the art and future challenges,” Annual Reviews in Control, vol. 45, pp. 18–40, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1367578818300336
  2. G. J. Naus, R. P. Vugts, J. Ploeg, M. J. van De Molengraft, and M. Steinbuch, “String-stable cacc design and experimental validation: A frequency-domain approach,” IEEE Transactions on vehicular technology, vol. 59, no. 9, pp. 4268–4279, 2010.
  3. B. McAuliffe, M. Lammert, X.-Y. Lu, S. Shladover, M.-D. Surcel, and A. Kailas, “Influences on energy savings of heavy trucks using cooperative adaptive cruise control,” SAE technical paper, no. 2018-01, p. 1181, 2018.
  4. Y. Kim, J. Guanetti, and F. Borrelli, “Compact cooperative adaptive cruise control for energy saving: Air drag modelling and simulation,” IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 9838–9848, 2021.
  5. A. Askari, D. A. Farias, A. A. Kurzhanskiy, and P. Varaiya, “Effect of adaptive and cooperative adaptive cruise control on throughput of signalized arterials,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1287–1292.
  6. L. Bertoni, J. Guanetti, M. Basso, M. Masoero, S. Cetinkunt, and F. Borrelli, “An adaptive cruise control for connected energy-saving electric vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 2359–2364, 2017.
  7. S. Bae, Y. Choi, Y. Kim, J. Guanetti, F. Borrelli, and S. Moura, “Real-time ecological velocity planning for plug-in hybrid vehicles with partial communication to traffic lights,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 1279–1285.
  8. T. Ard, L. Guo, J. Han, Y. Jia, A. Vahidi, and D. Karbowski, “Energy-efficient driving in connected corridors via minimum principle control: Vehicle-in-the-loop experimental verification in mixed fleets,” IEEE Transactions on Intelligent Vehicles, pp. 1–14, 2023.
  9. Z. Wang, G. Wu, and M. J. Barth, “Cooperative eco-driving at signalized intersections in a partially connected and automated vehicle environment,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 2029–2038, 2019.
  10. J. Ma, F. Zhou, Z. Huang, C. L. Melson, R. James, and X. Zhang, “Hardware-in-the-loop testing of connected and automated vehicle applications: a use case for queue-aware signalized intersection approach and departure,” Transportation Research Record, vol. 2672, no. 22, pp. 36–46, 2018.
  11. S. Bae, Y. Kim, J. Guanetti, F. Borrelli, and S. Moura, “Design and implementation of ecological adaptive cruise control for autonomous driving with communication to traffic lights,” in 2019 American Control Conference (ACC), 2019, pp. 4628–4634.
  12. T. Ard, L. Guo, R. A. Dollar, A. Fayazi, N. Goulet, Y. Jia, B. Ayalew, and A. Vahidi, “Energy and flow effects of optimal automated driving in mixed traffic: Vehicle-in-the-loop experimental results,” Transportation Research Part C: Emerging Technologies, vol. 130, p. 103168, 2021.
  13. S. Bae, Y. Kim, Y. Choi, J. Guanetti, P. Gill, F. Borrelli, and S. J. Moura, “Ecological adaptive cruise control of plug-in hybrid electric vehicle with connected infrastructure and on-road experiments,” Journal of Dynamic Systems, Measurement, and Control, vol. 144, no. 1, p. 011109, 2022.
  14. C. Kim, Y. Yoon, S. Kim, M. J. Yoo, and K. Yi, “Trajectory planning and control of autonomous vehicles for static vehicle avoidance in dynamic traffic environments,” IEEE Access, 2023.
  15. E. Joa, K. Yi, and K. Kim, “A lateral driver model for vehicle–driver closed-loop simulation at the limits of handling,” Vehicle system dynamics, vol. 53, no. 9, pp. 1247–1268, 2015.
  16. D. González, J. Pérez, R. Lattarulo, V. Milanés, and F. Nashashibi, “Continuous curvature planning with obstacle avoidance capabilities in urban scenarios,” in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2014, pp. 1430–1435.
  17. A. Sciarretta, G. De Nunzio, and L. L. Ojeda, “Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem,” IEEE control systems magazine, vol. 35, no. 5, pp. 71–90, 2015.
  18. Y. Choi, “Energy efficient vehicle dynamics and powertrain controls for connected plug-in hybrid electric vehicles,” Ph.D. dissertation, UC Berkeley, 2021.
  19. K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, “Standards for passenger comfort in automated vehicles: Acceleration and jerk,” Applied Ergonomics, vol. 106, p. 103881, 2023.
  20. X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 972–983, 2020.
  21. H. Chae, Y. Jeong, H. Lee, J. Park, and K. Yi, “Design and implementation of human driving data–based active lane change control for autonomous vehicles,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 235, no. 1, pp. 55–77, 2021.
  22. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, In Press, 2018.
  23. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.
Citations (3)

Summary

We haven't generated a summary for this paper yet.