Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Political corpus creation through automatic speech recognition on EU debates (2304.08137v1)

Published 17 Apr 2023 in cs.CL

Abstract: In this paper, we present a transcribed corpus of the LIBE committee of the EU parliament, totalling 3.6 Million running words. The meetings of parliamentary committees of the EU are a potentially valuable source of information for political scientists but the data is not readily available because only disclosed as speech recordings together with limited metadata. The meetings are in English, partly spoken by non-native speakers, and partly spoken by interpreters. We investigated the most appropriate Automatic Speech Recognition (ASR) model to create an accurate text transcription of the audio recordings of the meetings in order to make their content available for research and analysis. We focused on the unsupervised domain adaptation of the ASR pipeline. Building on the transformer-based Wav2vec2.0 model, we experimented with multiple acoustic models, LLMs and the addition of domain-specific terms. We found that a domain-specific acoustic model and a domain-specific LLM give substantial improvements to the ASR output, reducing the word error rate (WER) from 28.22 to 17.95. The use of domain-specific terms in the decoding stage did not have a positive effect on the quality of the ASR in terms of WER. Initial topic modelling results indicated that the corpus is useful for downstream analysis tasks. We release the resulting corpus and our analysis pipeline for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hugo de Vos (3 papers)
  2. Suzan Verberne (57 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.