Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DETR-based Layered Clothing Segmentation and Fine-Grained Attribute Recognition (2304.08107v1)

Published 17 Apr 2023 in cs.CV

Abstract: Clothing segmentation and fine-grained attribute recognition are challenging tasks at the crossing of computer vision and fashion, which segment the entire ensemble clothing instances as well as recognize detailed attributes of the clothing products from any input human images. Many new models have been developed for the tasks in recent years, nevertheless the segmentation accuracy is less than satisfactory in case of layered clothing or fashion products in different scales. In this paper, a new DEtection TRansformer (DETR) based method is proposed to segment and recognize fine-grained attributes of ensemble clothing instances with high accuracy. In this model, we propose a \textbf{multi-layered attention module} by aggregating features of different scales, determining the various scale components of a single instance, and merging them together. We train our model on the Fashionpedia dataset and demonstrate our method surpasses SOTA models in tasks of layered clothing segmentation and fine-grained attribute recognition.

Citations (3)

Summary

We haven't generated a summary for this paper yet.