Papers
Topics
Authors
Recent
2000 character limit reached

Two-stage MR Image Segmentation Method for Brain Tumors based on Attention Mechanism

Published 17 Apr 2023 in eess.IV, cs.CV, and cs.LG | (2304.08072v2)

Abstract: Multimodal magnetic resonance imaging (MRI) can reveal different patterns of human tissue and is crucial for clinical diagnosis. However, limited by cost, noise and manual labeling, obtaining diverse and reliable multimodal MR images remains a challenge. For the same lesion, different MRI manifestations have great differences in background information, coarse positioning and fine structure. In order to obtain better generation and segmentation performance, a coordination-spatial attention generation adversarial network (CASP-GAN) based on the cycle-consistent generative adversarial network (CycleGAN) is proposed. The performance of the generator is optimized by introducing the Coordinate Attention (CA) module and the Spatial Attention (SA) module. The two modules can make full use of the captured location information, accurately locating the interested region, and enhancing the generator model network structure. The ability to extract the structure information and the detailed information of the original medical image can help generate the desired image with higher quality. There exist some problems in the original CycleGAN that the training time is long, the parameter amount is too large, and it is difficult to converge. In response to this problem, we introduce the Coordinate Attention (CA) module to replace the Res Block to reduce the number of parameters, and cooperate with the spatial information extraction network above to strengthen the information extraction ability. On the basis of CASP-GAN, an attentional generative cross-modality segmentation (AGCMS) method is further proposed. This method inputs the modalities generated by CASP-GAN and the real modalities into the segmentation network for brain tumor segmentation. Experimental results show that CASP-GAN outperforms CycleGAN and some state-of-the-art methods in PSNR, SSMI and RMSE in most tasks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.