Monochromatic cycles in 2-edge-colored bipartite graphs with large minimum degree (2304.08003v4)
Abstract: For graphs $G_0$, $G_1$ and $G_2$, write $G_0\longmapsto(G_1, G_2)$ if each red-blue-edge-coloring of $G_0$ yields a red $G_1$ or a blue $G_2$. The Ramsey number $r(G_1, G_2)$ is the minimum number $n$ such that the complete graph $K_n\longmapsto(G_1, G_2)$. In [Discrete Math. 312(2012)], Schelp formulated the following question: for which graphs $H$ there is a constant $0<c\<1$ such that for any graph $G$ of order at least $r(H, H)$ with $\delta(G)>c|V(G)|$, $G\longmapsto(H, H)$. In this paper, we prove that for any $m>n$, if $G$ is a balanced bipartite graph of order $2(m+n-1)$ with $\delta(G)>\frac{3}{4}(m+n-1)$, then $G\longmapsto(CM_m, CM_n)$, where $CM_i$ is a matching with $i$ edges contained in a connected component. By Szem\'{e}redi's Regularity Lemma, using a similar idea as introduced by [J. Combin. Theory Ser. B 75(1999)], we show that for every $\eta>0$, there is an integer $N_0>0$ such that for any $N>N_0$ the following holds: Let $\alpha_1>\alpha_2>0$ such that $\alpha_1+\alpha_2=1$. Let $G[X, Y]$ be a balanced bipartite graph on $2(N-1)$ vertices with $\delta(G)\geq(\frac{3}{4}+3\eta)(N-1)$. Then for each red-blue-edge-coloring of $G$, either there exist red even cycles of each length in ${4, 6, 8, \ldots, (2-3\eta2)\alpha_1N}$, or there exist blue even cycles of each length in ${4, 6, 8, \ldots, (2-3\eta2)\alpha_2N}$. Furthermore, the bound $\delta(G)\geq(\frac{3}{4}+3\eta)(N-1)$ is asymptotically tight. Previous studies on Schelp's question on cycles are on diagonal case, we obtain an asymptotic result of Schelp's question for all non-diagonal cases.
- Monochromatic paths and cycles in 2-edge-coloured graphs with large minimum degree. Combin. Probab. Comput., 31(1):109–122, 2022.
- On a bipartite form of the Ramsey problem. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pages 17–22. Utilitas Math., Winnipeg, Man., 1976.
- Monochromatic cycles in 2-coloured graphs. Combin. Probab. Comput., 21(1-2):57–87, 2012.
- J. A. Bondy and P. Erdős. Ramsey numbers for cycles in graphs. J. Combin. Theory Ser. B, 14:46–54, 1973.
- 3-color bipartite Ramsey number of cycles and paths. J. Graph Theory, 92(4):445–459, 2019.
- Multicolour bipartite Ramsey number of paths. Electron. J. Combin., 26(3):Paper No. 3.60, 15, 2019.
- L. DeBiasio and R. A. Krueger. Long monochromatic paths and cycles in 2-colored bipartite graphs. Discrete Math., 343(8):111907, 10, 2020.
- Path-path Ramsey-type numbers for the complete bipartite graph. J. Combin. Theory Ser. B, 19(2):161–173, 1975.
- M. Gholami and Y. Rowshan. The bipartite Ramsey numbers BR(C8,C2n)𝐵𝑅subscript𝐶8subscript𝐶2𝑛BR(C_{8},C_{2n})italic_B italic_R ( italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ), Discrete Math. Theor. Comput. Sci., 25(2):Paper No. 15, 16, 2023.
- A. Gyárfás and J. Lehel. A Ramsey-type problem in directed and bipartite graphs. Period. Math. Hungar., 3(3-4):299–304, 1973.
- A. Gyárfás and G. N. Sárközy. Star versus two stripes Ramsey numbers and a conjecture of Schelp. Combin. Probab. Comput., 21(1-2):179–186, 2012.
- S. Letzter. An improvement on łuczak’s connected matchings method. Bull. Lond. Math. Soc., 54(2):609–623, 2022.
- A new class of Ramsey-Turán problems. Discrete Math., 310(24):3579–3583, 2010.
- S. Liu and Y. Peng. Multicolored Bipartite Ramsey Numbers of Large Cycles. Acta Math. Appl. Sin. Engl. Ser., 40(2):347–357, 2024.
- T. Łuczak. R(Cn,Cn,Cn)≤(4+o(1))n𝑅subscript𝐶𝑛subscript𝐶𝑛subscript𝐶𝑛4𝑜1𝑛R(C_{n},C_{n},C_{n})\leq(4+o(1))nitalic_R ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≤ ( 4 + italic_o ( 1 ) ) italic_n. J. Combin. Theory Ser. B, 75(2):174–187, 1999.
- Z. Luo and Y. Peng. Three-colored asymmetric bipartite Ramsey number of connected matchings and cycles. J. Graph Theory, 95(3):368–383, 2020.
- V. Nikiforov and R. Schelp. Cycles and stability. J. Combin. Theory Ser. B, 98(1):69–84, 2008.
- V. Rosta. On a Ramsey-type problem of J. A. Bondy and P. Erdős. I. J. Combin. Theory Ser. B, 15:94–104, 1973.
- V. Rosta. On a Ramsey-type problem of J. A. Bondy and P. Erdős. II. J. Combin. Theory Ser. B, 15:105–120, 1973.
- R. H. Schelp. Some Ramsey-Turán type problems and related questions. Discrete Math., 312(14):2158–2161, 2012.
- Bipartite Ramsey numbers for bipartite graphs of small bandwidth. Electron. J. Combin., 25(2):Paper No. 2.16, 12, 2018.
- E. Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 399–401. CNRS, Paris, 1978.
- Bipartite Ramsey numbers of cycles. European J. Combin., 118:Paper No. 103921, 11, 2024.
- R. Zhang and Y. Sun. The bipartite Ramsey numbers b(C2m;K2,2)𝑏subscript𝐶2𝑚subscript𝐾22b(C_{2m};K_{2,2})italic_b ( italic_C start_POSTSUBSCRIPT 2 italic_m end_POSTSUBSCRIPT ; italic_K start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT ). Electron. J. Combin., 18(1):Paper 51, 10, 2011.
- The bipartite Ramsey number b(C2m;C2n)𝑏subscript𝐶2𝑚subscript𝐶2𝑛b(C_{2m};C_{2n})italic_b ( italic_C start_POSTSUBSCRIPT 2 italic_m end_POSTSUBSCRIPT ; italic_C start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ). Int. J. Math. Comp. Sci. Eng, 7(1):152–155, 2013.