Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monochromatic cycles in 2-edge-colored bipartite graphs with large minimum degree (2304.08003v4)

Published 17 Apr 2023 in math.CO

Abstract: For graphs $G_0$, $G_1$ and $G_2$, write $G_0\longmapsto(G_1, G_2)$ if each red-blue-edge-coloring of $G_0$ yields a red $G_1$ or a blue $G_2$. The Ramsey number $r(G_1, G_2)$ is the minimum number $n$ such that the complete graph $K_n\longmapsto(G_1, G_2)$. In [Discrete Math. 312(2012)], Schelp formulated the following question: for which graphs $H$ there is a constant $0<c\<1$ such that for any graph $G$ of order at least $r(H, H)$ with $\delta(G)>c|V(G)|$, $G\longmapsto(H, H)$. In this paper, we prove that for any $m>n$, if $G$ is a balanced bipartite graph of order $2(m+n-1)$ with $\delta(G)>\frac{3}{4}(m+n-1)$, then $G\longmapsto(CM_m, CM_n)$, where $CM_i$ is a matching with $i$ edges contained in a connected component. By Szem\'{e}redi's Regularity Lemma, using a similar idea as introduced by [J. Combin. Theory Ser. B 75(1999)], we show that for every $\eta>0$, there is an integer $N_0>0$ such that for any $N>N_0$ the following holds: Let $\alpha_1>\alpha_2>0$ such that $\alpha_1+\alpha_2=1$. Let $G[X, Y]$ be a balanced bipartite graph on $2(N-1)$ vertices with $\delta(G)\geq(\frac{3}{4}+3\eta)(N-1)$. Then for each red-blue-edge-coloring of $G$, either there exist red even cycles of each length in ${4, 6, 8, \ldots, (2-3\eta2)\alpha_1N}$, or there exist blue even cycles of each length in ${4, 6, 8, \ldots, (2-3\eta2)\alpha_2N}$. Furthermore, the bound $\delta(G)\geq(\frac{3}{4}+3\eta)(N-1)$ is asymptotically tight. Previous studies on Schelp's question on cycles are on diagonal case, we obtain an asymptotic result of Schelp's question for all non-diagonal cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Monochromatic paths and cycles in 2-edge-coloured graphs with large minimum degree. Combin. Probab. Comput., 31(1):109–122, 2022.
  2. On a bipartite form of the Ramsey problem. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pages 17–22. Utilitas Math., Winnipeg, Man., 1976.
  3. Monochromatic cycles in 2-coloured graphs. Combin. Probab. Comput., 21(1-2):57–87, 2012.
  4. J. A. Bondy and P. Erdős. Ramsey numbers for cycles in graphs. J. Combin. Theory Ser. B, 14:46–54, 1973.
  5. 3-color bipartite Ramsey number of cycles and paths. J. Graph Theory, 92(4):445–459, 2019.
  6. Multicolour bipartite Ramsey number of paths. Electron. J. Combin., 26(3):Paper No. 3.60, 15, 2019.
  7. L. DeBiasio and R. A. Krueger. Long monochromatic paths and cycles in 2-colored bipartite graphs. Discrete Math., 343(8):111907, 10, 2020.
  8. Path-path Ramsey-type numbers for the complete bipartite graph. J. Combin. Theory Ser. B, 19(2):161–173, 1975.
  9. M. Gholami and Y. Rowshan. The bipartite Ramsey numbers B⁢R⁢(C8,C2⁢n)𝐵𝑅subscript𝐶8subscript𝐶2𝑛BR(C_{8},C_{2n})italic_B italic_R ( italic_C start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ), Discrete Math. Theor. Comput. Sci., 25(2):Paper No. 15, 16, 2023.
  10. A. Gyárfás and J. Lehel. A Ramsey-type problem in directed and bipartite graphs. Period. Math. Hungar., 3(3-4):299–304, 1973.
  11. A. Gyárfás and G. N. Sárközy. Star versus two stripes Ramsey numbers and a conjecture of Schelp. Combin. Probab. Comput., 21(1-2):179–186, 2012.
  12. S. Letzter. An improvement on łuczak’s connected matchings method. Bull. Lond. Math. Soc., 54(2):609–623, 2022.
  13. A new class of Ramsey-Turán problems. Discrete Math., 310(24):3579–3583, 2010.
  14. S. Liu and Y. Peng. Multicolored Bipartite Ramsey Numbers of Large Cycles. Acta Math. Appl. Sin. Engl. Ser., 40(2):347–357, 2024.
  15. T. Łuczak. R⁢(Cn,Cn,Cn)≤(4+o⁢(1))⁢n𝑅subscript𝐶𝑛subscript𝐶𝑛subscript𝐶𝑛4𝑜1𝑛R(C_{n},C_{n},C_{n})\leq(4+o(1))nitalic_R ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≤ ( 4 + italic_o ( 1 ) ) italic_n. J. Combin. Theory Ser. B, 75(2):174–187, 1999.
  16. Z. Luo and Y. Peng. Three-colored asymmetric bipartite Ramsey number of connected matchings and cycles. J. Graph Theory, 95(3):368–383, 2020.
  17. V. Nikiforov and R. Schelp. Cycles and stability. J. Combin. Theory Ser. B, 98(1):69–84, 2008.
  18. V. Rosta. On a Ramsey-type problem of J. A. Bondy and P. Erdős. I. J. Combin. Theory Ser. B, 15:94–104, 1973.
  19. V. Rosta. On a Ramsey-type problem of J. A. Bondy and P. Erdős. II. J. Combin. Theory Ser. B, 15:105–120, 1973.
  20. R. H. Schelp. Some Ramsey-Turán type problems and related questions. Discrete Math., 312(14):2158–2161, 2012.
  21. Bipartite Ramsey numbers for bipartite graphs of small bandwidth. Electron. J. Combin., 25(2):Paper No. 2.16, 12, 2018.
  22. E. Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 399–401. CNRS, Paris, 1978.
  23. Bipartite Ramsey numbers of cycles. European J. Combin., 118:Paper No. 103921, 11, 2024.
  24. R. Zhang and Y. Sun. The bipartite Ramsey numbers b⁢(C2⁢m;K2,2)𝑏subscript𝐶2𝑚subscript𝐾22b(C_{2m};K_{2,2})italic_b ( italic_C start_POSTSUBSCRIPT 2 italic_m end_POSTSUBSCRIPT ; italic_K start_POSTSUBSCRIPT 2 , 2 end_POSTSUBSCRIPT ). Electron. J. Combin., 18(1):Paper 51, 10, 2011.
  25. The bipartite Ramsey number b⁢(C2⁢m;C2⁢n)𝑏subscript𝐶2𝑚subscript𝐶2𝑛b(C_{2m};C_{2n})italic_b ( italic_C start_POSTSUBSCRIPT 2 italic_m end_POSTSUBSCRIPT ; italic_C start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ). Int. J. Math. Comp. Sci. Eng, 7(1):152–155, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com