Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Learning and Verifying Maximal Neural Lyapunov Functions (2304.07215v1)

Published 14 Apr 2023 in math.OC, cs.SY, and eess.SY

Abstract: The search for Lyapunov functions is a crucial task in the analysis of nonlinear systems. In this paper, we present a physics-informed neural network (PINN) approach to learning a Lyapunov function that is nearly maximal for a given stable set. A Lyapunov function is considered nearly maximal if its sub-level sets can be made arbitrarily close to the boundary of the domain of attraction. We use Zubov's equation to train a maximal Lyapunov function defined on the domain of attraction. Additionally, we propose conditions that can be readily verified by satisfiability modulo theories (SMT) solvers for both local and global stability. We provide theoretical guarantees on the existence of maximal Lyapunov functions and demonstrate the effectiveness of our computational approach through numerical examples.

Citations (8)

Summary

We haven't generated a summary for this paper yet.