Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convergence of nonlinear averaging dynamics with three-body interactions on hypergraphs (2304.07203v2)

Published 14 Apr 2023 in math.DS, cs.LG, cs.SI, math-ph, math.MP, and physics.soc-ph

Abstract: Complex networked systems in fields such as physics, biology, and social sciences often involve interactions that extend beyond simple pairwise ones. Hypergraphs serve as powerful modeling tools for describing and analyzing the intricate behaviors of systems with multi-body interactions. Herein, we investigate a discrete-time nonlinear averaging dynamics with three-body interactions: an underlying hypergraph, comprising triples as hyperedges, delineates the structure of these interactions, while the vertices update their states through a weighted, state-dependent average of neighboring pairs' states. This dynamics captures reinforcing group effects, such as peer pressure, and exhibits higher-order dynamical effects resulting from a complex interplay between initial states, hypergraph topology, and nonlinearity of the update. Differently from linear averaging dynamics on graphs with two-body interactions, this model does not converge to the average of the initial states but rather induces a shift. By assuming random initial states and by making some regularity and density assumptions on the hypergraph, we prove that the dynamics converges to a multiplicatively-shifted average of the initial states, with high probability. We further characterize the shift as a function of two parameters describing the initial state and interaction strength, as well as the convergence time as a function of the hypergraph structure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets