Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Transfer Guided Active Domain Adaptation For Thermal Imagery (2304.07031v1)

Published 14 Apr 2023 in cs.CV and cs.LG

Abstract: The exploitation of visible spectrum datasets has led deep networks to show remarkable success. However, real-world tasks include low-lighting conditions which arise performance bottlenecks for models trained on large-scale RGB image datasets. Thermal IR cameras are more robust against such conditions. Therefore, the usage of thermal imagery in real-world applications can be useful. Unsupervised domain adaptation (UDA) allows transferring information from a source domain to a fully unlabeled target domain. Despite substantial improvements in UDA, the performance gap between UDA and its supervised learning counterpart remains significant. By picking a small number of target samples to annotate and using them in training, active domain adaptation tries to mitigate this gap with minimum annotation expense. We propose an active domain adaptation method in order to examine the efficiency of combining the visible spectrum and thermal imagery modalities. When the domain gap is considerably large as in the visible-to-thermal task, we may conclude that the methods without explicit domain alignment cannot achieve their full potential. To this end, we propose a spectral transfer guided active domain adaptation method to select the most informative unlabeled target samples while aligning source and target domains. We used the large-scale visible spectrum dataset MS-COCO as the source domain and the thermal dataset FLIR ADAS as the target domain to present the results of our method. Extensive experimental evaluation demonstrates that our proposed method outperforms the state-of-the-art active domain adaptation methods. The code and models are publicly available.

Citations (2)

Summary

We haven't generated a summary for this paper yet.