Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving Locality in Vision Transformers for Class Incremental Learning (2304.06971v1)

Published 14 Apr 2023 in cs.LG and cs.CV

Abstract: Learning new classes without forgetting is crucial for real-world applications for a classification model. Vision Transformers (ViT) recently achieve remarkable performance in Class Incremental Learning (CIL). Previous works mainly focus on block design and model expansion for ViTs. However, in this paper, we find that when the ViT is incrementally trained, the attention layers gradually lose concentration on local features. We call this interesting phenomenon as \emph{Locality Degradation} in ViTs for CIL. Since the low-level local information is crucial to the transferability of the representation, it is beneficial to preserve the locality in attention layers. In this paper, we encourage the model to preserve more local information as the training procedure goes on and devise a Locality-Preserved Attention (LPA) layer to emphasize the importance of local features. Specifically, we incorporate the local information directly into the vanilla attention and control the initial gradients of the vanilla attention by weighting it with a small initial value. Extensive experiments show that the representations facilitated by LPA capture more low-level general information which is easier to transfer to follow-up tasks. The improved model gets consistently better performance on CIFAR100 and ImageNet100.

Citations (3)

Summary

We haven't generated a summary for this paper yet.