Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Approximations for Relative Survivable Network Design (2304.06656v2)

Published 13 Apr 2023 in cs.DS and cs.DM

Abstract: One of the most important and well-studied settings for network design is edge-connectivity requirements. This encompasses uniform demands such as the Minimum $k$-Edge-Connected Spanning Subgraph problem as well as nonuniform demands such as the Survivable Network Design problem (SND). In a paper by [Dinitz, Koranteng, Kortsarz APPROX '22] , the authors observed that a weakness of these formulations is that it does not enable one to consider fault-tolerance in graphs that have just a few small cuts. To remedy this, they introduced new variants of these problems under the notion "relative" fault-tolerance. Informally, this requires not that two nodes are connected if there are a bounded number of faults (as in the classical setting), but that two nodes are connected if there are a bounded number of faults and the two nodes are connected in the underlying graph post-faults. The problem is already highly non-trivial even for the case of a single demand. Due to difficulties introduced by this new notion of fault-tolerance, the results in [Dinitz, Koranteng, Kortsarz APPROX '22] are quite limited. For the Relative Survivable Network Design problem (RSND), when the demands are not uniform they give a nontrivial result only when there is a single demand with a connectivity requirement of $3$: a non-optimal $27/4$-approximation. We strengthen this result in two significant ways: We give a $2$-approximation for RSND where all requirements are at most $3$, and a $2{O(k2)}$-approximation for RSND with a single demand of arbitrary value $k$. To achieve these results, we first use the "cactus representation'' of minimum cuts to give a lossless reduction to normal SND. Second, we extend the techniques of [Dinitz, Koranteng, Kortsarz APPROX '22] to prove a generalized and more complex version of their structure theorem, which we then use to design a recursive approximation algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.