2000 character limit reached
The extremal unicyclic graphs of the revised edge Szeged index with given diameter (2304.06241v1)
Published 13 Apr 2023 in math.CO
Abstract: Let $G$ be a connected graph. The revised edge Szeged index of $G$ is defined as $Sz{\ast}{e}(G)=\sum\limits{e=uv\in E(G)}(m_{u}(e|G)+\frac{m_{0}(e|G)}{2})(m_{v}(e|G)+\frac{m_{0}(e|G)}{2})$, where $m_{u}(e|G)$ (resp., $m_{v}(e|G)$) is the number of edges whose distance to vertex $u$ (resp., $v$) is smaller than the distance to vertex $v$ (resp., $u$), and $m_{0}(e|G)$ is the number of edges equidistant from both ends of $e$, respectively. In this paper, the graphs with minimum revised edge Szeged index among all the unicyclic graphs with given diameter are characterized.