Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Coverage Control of Constrained Constant-Speed Unicycle Multi-Agent Systems (2304.05723v2)

Published 12 Apr 2023 in eess.SY, cs.RO, and cs.SY

Abstract: This paper proposes a novel distributed coverage controller for a multi-agent system with constant-speed unicycle robots (CSUR). The work is motivated by the limitation of the conventional method that does not ensure the satisfaction of hard state- and input-dependent constraints and leads to feasibility issues for multi-CSUR systems. In this paper, we solve these problems by designing a novel coverage cost function and a saturated gradient-search-based control law. Invariant set theory and Lyapunov-based techniques are used to prove the state-dependent confinement and the convergence of the system state to the optimal coverage configuration, respectively. The controller is implemented in a distributed manner based on a novel communication standard among the agents. A series of simulation case studies are conducted to validate the effectiveness of the proposed coverage controller in different initial conditions and with control parameters. A comparison study in simulation reveals the advantage of the proposed method in terms of avoiding infeasibility. The experiment study verifies the applicability of the method to real robots with uncertainties. The development procedure of the method from theoretical analysis to experimental validation provides a novel framework for multi-agent system coordinate control with complex agent dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. Coombes, T. Fletcher, W.-H. Chen, and C. Liu, “Optimal polygon decomposition for uav survey coverage path planning in wind,” Sensors, vol. 18, no. 7, p. 2132, 2018.
  2. D. Marx and M. Pilipczuk, “Optimal parameterized algorithms for planar facility location problems using voronoi diagrams,” in Algorithms-ESA 2015.   Springer, 2015, pp. 865–877.
  3. J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.
  4. Q. Liu, M. Ye, Z. Sun, J. Qin, and C. Yu, “Coverage control of unicycle agents under constant speed constraints,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 2471–2476, 2017.
  5. H. Oh, S. Kim, H.-s. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple uavs,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1501–1514, 2015.
  6. B. Yuksek, A. Vuruskan, U. Ozdemir, M. Yukselen, and G. Inalhan, “Transition flight modeling of a fixed-wing vtol uav,” Journal of Intelligent & Robotic Systems, vol. 84, no. 1, pp. 83–105, 2016.
  7. J. Qin, S. Wang, Y. Kang, and Q. Liu, “Circular formation algorithms for multiple nonholonomic mobile robots: An optimization-based approach,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3693–3701, 2018.
  8. Z. Zhao, W. He, and S. S. Ge, “Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1536–1543, 2013.
  9. M. Schwager, F. Bullo, D. Skelly, and D. Rus, “A ladybug exploration strategy for distributed adaptive coverage control,” in 2008 IEEE International Conference on Robotics and Automation.   IEEE, 2008, pp. 2346–2353.
  10. Y. Chan, “Facility location: a survey of applications and methods,” Transportation Science, vol. 33, no. 4, p. 429, 1999.
  11. J. Cortés and F. Bullo, “Coordination and geometric optimization via distributed dynamical systems,” SIAM Journal on Control and Optimization, vol. 44, no. 5, pp. 1543–1574, 2005.
  12. M. Schwager, B. J. Julian, and D. Rus, “Optimal coverage for multiple hovering robots with downward facing cameras,” in 2009 IEEE International Conference on Robotics and Automation.   IEEE, 2009, pp. 3515–3522.
  13. M. Schwager, J. McLurkin, J.-J. E. Slotine, and D. Rus, “From theory to practice: Distributed coverage control experiments with groups of robots,” in Experimental Robotics.   Springer, 2009, pp. 127–136.
  14. M. Schwager, D. Rus, and J.-J. Slotine, “Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment,” The International Journal of Robotics Research, vol. 30, no. 3, pp. 371–383, 2011.
  15. O. Arslan and D. E. Koditschek, “Voronoi-based coverage control of heterogeneous disk-shaped robots,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 4259–4266.
  16. A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Murphey, “Real-time area coverage and target localization using receding-horizon ergodic exploration,” IEEE Transactions on Robotics, vol. 34, no. 1, pp. 62–80, 2017.
  17. C. Song, L. Liu, G. Feng, Y. Fan, and S. Xu, “Coverage control for heterogeneous mobile sensor networks with bounded position measurement errors,” Automatica, vol. 120, p. 109118, 2020.
  18. W. Li and M. W. Spong, “Unified cooperative control of multiple agents on a sphere for different spherical patterns,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1283–1289, 2013.
  19. D. Zhou and M. Schwager, “Vector field following for quadrotors using differential flatness,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 6567–6572.
  20. M. Karatas, “Optimal deployment of heterogeneous sensor networks for a hybrid point and barrier coverage application,” Computer Networks, vol. 132, pp. 129–144, 2018.
  21. Ö. Arslan, “Statistical coverage control of mobile sensor networks,” IEEE Transactions on Robotics, vol. 35, no. 4, pp. 889–908, 2019.
  22. G. M. Atınç, D. M. Stipanović, and P. G. Voulgaris, “A swarm-based approach to dynamic coverage control of multi-agent systems,” Automatica, vol. 112, p. 108637, 2020.
  23. Y. Wang, S. Wu, Z. Chen, X. Gao, and G. Chen, “Coverage problem with uncertain properties in wireless sensor networks: A survey,” Computer Networks, vol. 123, pp. 200–232, 2017.
  24. C. Zhai, Z. Wang, and J. Dou, “Multi-agent coverage control for enhanced geohazard monitoring: a brief review,” Control Theory and Technology, vol. 19, no. 3, pp. 418–420, 2021.
  25. A. Z. Abdulghafoor and E. Bakolas, “Two-level control of multiagent networks for dynamic coverage problems,” IEEE Transactions on Cybernetics, 2021.
  26. D. T. Hua, D. S. Lakew, and S. Cho, “Drl-based energy efficient communication coverage control in hierarchical hap-lap network,” in 2022 International Conference on Information Networking (ICOIN).   IEEE, 2022, pp. 359–362.
  27. Q. Sun, T. Liao, Z.-W. Liu, M. Chi, and D. He, “Fixed-time coverage control of mobile robot networks considering the time cost metric,” Sensors, vol. 22, no. 22, p. 8938, 2022.
  28. Y.-f. Zhang, M. Zhu, T. Chen, and Z.-w. Zheng, “Region coverage control for multiple stratospheric airships with combined self-/event-triggered mechanism,” Defence Technology, 2022.
  29. Q. Sun, M. Chi, Z.-W. Liu, and D. He, “Observer-based coverage control of unicycle mobile robot network in dynamic environment,” Journal of the Franklin Institute, vol. 360, no. 12, pp. 9015–9027, 2023.
  30. F. Aydemir and A. Cetin, “Multi-agent dynamic area coverage based on reinforcement learning with connected agents,” Computer Systems Science and Engineering, vol. 45, no. 1, 2023.
  31. X. Xu, W. Meng, Q. Cai, and M. Fu, “Multiagent coverage search based on voronoi and sparse heteroscedastic gaussian process,” Asian Journal of Control, vol. 25, no. 2, pp. 989–1004, 2023.
  32. A. Kwok and S. Martìnez, “Unicycle coverage control via hybrid modeling,” IEEE Transactions on Automatic Control, vol. 55, no. 2, pp. 528–532, 2010.
  33. L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–674, 2017.
  34. F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
  35. Z. Zhang, D. Wollherr, and H. Najjaran, “Disturbance estimation for robotic systems using continuous integral sliding mode observer,” International Journal of Robust and Nonlinear Control, vol. 32, no. 14, pp. 7946–7966, 2022.
  36. S. P. Najafabadi and M. Hashemi, “The adaptive sliding synchronization of uncertain duffing-holmes fractional-order chaotic systems with dead-zone,” Journal of Vibration and Control, 2023.
  37. A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and D. Rus, “Voronoi coverage of non-convex environments with a group of networked robots,” in 2010 IEEE International Conference on Robotics and Automation.   IEEE, 2010, pp. 4982–4989.
  38. M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive coverage control for networked robots,” The International Journal of Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.
  39. M. Schwager, “A gradient optimization approach to adaptive multi-robot control,” MASSACHUSETTS INST OF TECH CAMBRIDGE, Tech. Rep., 2009.
  40. M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control with sensory feedback for networked robots.” in Robotics: Science and Systems, 2006, pp. 49–56.
  41. Y. Li and C. Tan, “A survey of the consensus for multi-agent systems,” Systems Science & Control Engineering, vol. 7, no. 1, pp. 468–482, 2019.
  42. K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, 2015.
  43. M. Zhong and C. G. Cassandras, “Asynchronous distributed optimization with event-driven communication,” IEEE Transactions on Automatic Control, vol. 55, no. 12, pp. 2735–2750, 2010.
  44. D. Bunjaku and M. Stankovski, “The system identification in industrial control: Case study on the differential wheeled mobile robot,” in 2017 13th IEEE International Conference on Control & Automation (ICCA).   IEEE, 2017, pp. 94–99.
  45. G. S. Seyboth, J. Wu, J. Qin, C. Yu, and F. Allgöwer, “Collective circular motion of unicycle type vehicles with nonidentical constant velocities,” IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp. 167–176, 2014.
  46. Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations: Applications and algorithms,” SIAM review, vol. 41, no. 4, pp. 637–676, 1999.
  47. Y. Cao, J. Wen, A. Hobiny, P. Li, and T. Wen, “Parameter-varying artificial potential field control of virtual coupling system with nonlinear dynamics,” Fractals, vol. 30, no. 02, p. 2240099, 2022.
  48. W. Xiao, C. A. Belta, and C. G. Cassandras, “Sufficient conditions for feasibility of optimal control problems using control barrier functions,” Automatica, vol. 135, p. 109960, 2022.
  49. Q. Du and M. Emelianenko, “Acceleration schemes for computing centroidal voronoi tessellations,” Numerical Linear Algebra with Applications, vol. 13, no. 2-3, pp. 173–192, 2006.
  50. K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.
  51. C. Ma, T. Li, and J. Zhang, “Consensus control for leader-following multi-agent systems with measurement noises,” Journal of Systems Science and Complexity, vol. 23, no. 1, pp. 35–49, 2010.
  52. C. N. Hadjicostis and M. Cao, “Distributed algorithms for voronoi diagrams and applications in ad-hoc networks,” Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Tech. Rep., 2003. [Online]. Available: http://hdl.handle.net/2142/99588
  53. M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Distributed voronoi neighbor identification from inter-robot distances,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1320–1327, 2017.
  54. P. Zhang, T. Liu, and Z.-P. Jiang, “Tracking control of unicycle mobile robots with event-triggered and self-triggered feedback,” IEEE Transactions on Automatic Control, vol. 68, no. 4, pp. 2261–2276, 2022.
  55. G. Li and T. K. Pong, “Global convergence of splitting methods for nonconvex composite optimization,” SIAM Journal on Optimization, vol. 25, no. 4, pp. 2434–2460, 2015.
Citations (3)

Summary

We haven't generated a summary for this paper yet.