Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on non-linear errors for variance computation with stochastic rounding (2304.05177v2)

Published 11 Apr 2023 in math.NA and cs.NA

Abstract: The main objective of this work is to investigate non-linear errors and pairwise summation using stochastic rounding (SR) in variance computation algorithms. We estimate the forward error of computations under SR through two methods: the first is based on a bound of the variance and Bienaym{\'e}-Chebyshev inequality, while the second is based on martingales and Azuma-Hoeffding inequality. The study shows that for pairwise summation, using SR results in a probabilistic bound of the forward error proportional to log(n)u rather than the deterministic bound in O(log(n)u) when using the default rounding mode. We examine two algorithms that compute the variance, called ''textbook'' and ''two-pass'', which both exhibit non-linear errors. Using the two methods mentioned above, we show that these algorithms' forward errors have probabilistic bounds under SR in O($\sqrt$ nu) instead of nu for the deterministic bounds. We show that this advantage holds using pairwise summation for both textbook and two-pass, with probabilistic bounds of the forward error proportional to log(n)u.

Citations (3)

Summary

We haven't generated a summary for this paper yet.