Characterizing quasi-steady states of fast neutrino-flavor conversion by stability and conservation laws (2304.05044v2)
Abstract: The question of what ingredients characterize the quasi-steady state of fast neutrino-flavor conversion (FFC) is one of the long-standing riddles in neutrino oscillation. Addressing this issue is necessary for accurate modeling of neutrino transport in core-collapse supernova and binary neutron star merger. Recent numerical simulations of FFC have shown, however, that the quasi-steady state is sensitively dependent on boundary conditions in space, and the physical reason for the dependence is not clear at present. In this study, we provide a physical interpretation of this issue based on arguments with stability and conservation laws. The stability can be determined by the disappearance of ELN(electron neutrino-lepton number)-XLN(heavy-leptonic one) angular crossings, and we also highlight two conserved quantities characterizing the quasi-steady state of FFC: (1) lepton number conservation along each neutrino trajectory and (2) conservation law associated with angular moments, depending on boundary conditions, for each flavor of neutrinos. We present an analytic prescription that matches the results of the nonlinear simulations presented in this work. This study represents a major step forward a unified picture determining asymptotic states of FFCs.
- J. Pantaleone, Physics Letters B 287, 128 (1992a).
- J. Pantaleone, Physical Review D 46, 510 (1992b).
- G. Sigl and G. Raffelt, Nuclear Physics B 406, 423 (1993).
- R. F. Sawyer, Physical Review Letters 116, 081101 (2016).
- S. Richers and M. Sen, (2022), 10.48550/arXiv.2207.03561, arxiv:2207.03561 [astro-ph, physics:hep-ph] .
- T. Morinaga, Physical Review D 105, L101301 (2022).
- B. Dasgupta, Physical Review Letters 128, 081102 (2022).
- S. Abbar, Journal of Cosmology and Astroparticle Physics 2020, 027 (2020).
- S. Abbar, (2023), 10.48550/arXiv.2303.05560, arxiv:2303.05560 [astro-ph, physics:hep-ph] .
- L. Johns and H. Nagakura, Physical Review D 103, 123012 (2021).
- H. Nagakura and L. Johns, Physical Review D 103, 123025 (2021a).
- H. Nagakura and L. Johns, Physical Review D 104, 063014 (2021b).
- A. Harada and H. Nagakura, The Astrophysical Journal 924, 109 (2022).
- S. Shalgar and I. Tamborra, Physical Review D 103, 063002 (2021).
- C. Kato and H. Nagakura, Physical Review D 106, 123013 (2022).
- H. Sasaki and T. Takiwaki, Progress of Theoretical and Experimental Physics 2022, 073E01 (2022).
- G. Sigl, Physical Review D 105, 043005 (2022).
- L. Johns and H. Nagakura, Physical Review D 106, 043031 (2022).
- L. Johns, (2021), 10.48550/arXiv.2104.11369, arxiv:2104.11369 [astro-ph, physics:hep-ph] .
- L. Johns and Z. Xiong, Physical Review D 106, 103029 (2022).
- S. Bhattacharyya and B. Dasgupta, Physical Review D 102, 063018 (2020).
- S. Bhattacharyya and B. Dasgupta, Physical Review Letters 126, 061302 (2021).
- S. Bhattacharyya and B. Dasgupta, Physical Review D 106, 103039 (2022).
- M. Zaizen and T. Morinaga, Physical Review D 104, 083035 (2021).
- M. Zaizen and H. Nagakura, Physical Review D 107, 103022 (2023).
- H. Nagakura, Physical Review D 106, 063011 (2022).
- H. Nagakura and M. Zaizen, Physical Review Letters 129, 261101 (2022).
- H. Nagakura and M. Zaizen, Physical Review D 107, 063033 (2023).