Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ideal class groups of division fields of elliptic curves and everywhere unramified rational points (2304.05035v3)

Published 11 Apr 2023 in math.NT

Abstract: Let $E$ be an elliptic curve over $\mathbb{Q}$, $p$ an odd prime number and $n$ a positive integer. In this article, we investigate the ideal class group $\mathrm{Cl}(\mathbb{Q}(E[pn]))$ of the $pn$-division field $\mathbb{Q}(E[pn])$ of $E$. We introduce a certain subgroup $E(\mathbb{Q})_{\mathrm{ur},pn}$ of $E(\mathbb{Q})$ and study the $p$-adic valuation of the class number $#\mathrm{Cl}(\mathbb{Q}(E[pn]))$. In addition, when $n = 1$, we further study $\mathrm{Cl}(\mathbb{Q}(E[p]))$ as a $\mathrm{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$- module. More precisely, we study the semi-simplification $(\mathrm{Cl}(\mathbb{Q}(E[p]))\otimes \mathbb{Z}_p){\mathrm{ss}}$ of $\mathrm{Cl}(\mathbb{Q}(E[p]))\otimes \mathbb{Z}_p$ as a $\mathbb{Z}_p[\mathrm{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})]$-module. We obtain a lower bound of the multiplicity of the $E[p]$-component in the semi-simplification when $E[p]$ is an irreducible $\mathrm{Gal}(\mathbb{Q}(E[p])/\mathbb{Q})$-module.

Summary

We haven't generated a summary for this paper yet.