Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human Motion Detection Based on Dual-Graph and Weighted Nuclear Norm Regularizations (2304.04879v1)

Published 10 Apr 2023 in cs.CV

Abstract: Motion detection has been widely used in many applications, such as surveillance and robotics. Due to the presence of the static background, a motion video can be decomposed into a low-rank background and a sparse foreground. Many regularization techniques that preserve low-rankness of matrices can therefore be imposed on the background. In the meanwhile, geometry-based regularizations, such as graph regularizations, can be imposed on the foreground. Recently, weighted regularization techniques including the weighted nuclear norm regularization have been proposed in the image processing community to promote adaptive sparsity while achieving efficient performance. In this paper, we propose a robust dual graph regularized moving object detection model based on a novel weighted nuclear norm regularization and spatiotemporal graph Laplacians. Numerical experiments on realistic human motion data sets have demonstrated the effectiveness and robustness of this approach in separating moving objects from background, and the enormous potential in robotic applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.