Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modularizing and Assembling Cognitive Map Learners via Hyperdimensional Computing (2304.04734v1)

Published 10 Apr 2023 in cs.NE

Abstract: Biological organisms must learn how to control their own bodies to achieve deliberate locomotion, that is, predict their next body position based on their current position and selected action. Such learning is goal-agnostic with respect to maximizing (minimizing) an environmental reward (penalty) signal. A cognitive map learner (CML) is a collection of three separate yet collaboratively trained artificial neural networks which learn to construct representations for the node states and edge actions of an arbitrary bidirectional graph. In so doing, a CML learns how to traverse the graph nodes; however, the CML does not learn when and why to move from one node state to another. This work created CMLs with node states expressed as high dimensional vectors suitable for hyperdimensional computing (HDC), a form of symbolic ML. In so doing, graph knowledge (CML) was segregated from target node selection (HDC), allowing each ML approach to be trained independently. The first approach used HDC to engineer an arbitrary number of hierarchical CMLs, where each graph node state specified target node states for the next lower level CMLs to traverse to. Second, an HDC-based stimulus-response experience model was demonstrated per CML. Because hypervectors may be in superposition with each other, multiple experience models were added together and run in parallel without any retraining. Lastly, a CML-HDC ML unit was modularized: trained with proxy symbols such that arbitrary, application-specific stimulus symbols could be operated upon without retraining either CML or HDC model. These methods provide a template for engineering heterogenous ML systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.