Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Epidemic Control on a Large-Scale-Agent-Based Epidemiology Model using Deep Deterministic Policy Gradient (2304.04475v1)

Published 10 Apr 2023 in cs.LG, cs.SY, and eess.SY

Abstract: To mitigate the impact of the pandemic, several measures include lockdowns, rapid vaccination programs, school closures, and economic stimulus. These interventions can have positive or unintended negative consequences. Current research to model and determine an optimal intervention automatically through round-tripping is limited by the simulation objectives, scale (a few thousand individuals), model types that are not suited for intervention studies, and the number of intervention strategies they can explore (discrete vs continuous). We address these challenges using a Deep Deterministic Policy Gradient (DDPG) based policy optimization framework on a large-scale (100,000 individual) epidemiological agent-based simulation where we perform multi-objective optimization. We determine the optimal policy for lockdown and vaccination in a minimalist age-stratified multi-vaccine scenario with a basic simulation for economic activity. With no lockdown and vaccination (mid-age and elderly), results show optimal economy (individuals below the poverty line) with balanced health objectives (infection, and hospitalization). An in-depth simulation is needed to further validate our results and open-source our framework.

Summary

We haven't generated a summary for this paper yet.