Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparison of Krylov methods for Shifted Skew-Symmetric Systems (2304.04092v1)

Published 8 Apr 2023 in math.NA and cs.NA

Abstract: It is well known that for general linear systems, only optimal Krylov methods with long recurrences exist. For special classes of linear systems it is possible to find optimal Krylov methods with short recurrences. In this paper we consider the important class of linear systems with a shifted skew-symmetric coefficient matrix. We present the MRS3 solver, a minimal residual method that solves these problems using short vector recurrences. We give an overview of existing Krylov solvers that can be used to solve these problems, and compare them with the MRS3 method, both theoretically and by numerical experiments. From this comparison we argue that the MRS3 solver is the fastest and most robust of these Krylov method for systems with a shifted skew-symmetric coefficient matrix.

Citations (2)

Summary

We haven't generated a summary for this paper yet.