Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Agnostic Gender Debiased Image Captioning (2304.03693v3)

Published 7 Apr 2023 in cs.CV

Abstract: Image captioning models are known to perpetuate and amplify harmful societal bias in the training set. In this work, we aim to mitigate such gender bias in image captioning models. While prior work has addressed this problem by forcing models to focus on people to reduce gender misclassification, it conversely generates gender-stereotypical words at the expense of predicting the correct gender. From this observation, we hypothesize that there are two types of gender bias affecting image captioning models: 1) bias that exploits context to predict gender, and 2) bias in the probability of generating certain (often stereotypical) words because of gender. To mitigate both types of gender biases, we propose a framework, called LIBRA, that learns from synthetically biased samples to decrease both types of biases, correcting gender misclassification and changing gender-stereotypical words to more neutral ones. Code is available at https://github.com/rebnej/LIBRA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yusuke Hirota (9 papers)
  2. Yuta Nakashima (67 papers)
  3. Noa Garcia (33 papers)
Citations (13)
Github Logo Streamline Icon: https://streamlinehq.com