Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Retrieval to Generation: Efficient and Effective Entity Set Expansion (2304.03531v4)

Published 7 Apr 2023 in cs.CL and cs.IR

Abstract: Entity Set Expansion (ESE) is a critical task aiming at expanding entities of the target semantic class described by seed entities. Most existing ESE methods are retrieval-based frameworks that need to extract contextual features of entities and calculate the similarity between seed entities and candidate entities. To achieve the two purposes, they iteratively traverse the corpus and the entity vocabulary, resulting in poor efficiency and scalability. Experimental results indicate that the time consumed by the retrieval-based ESE methods increases linearly with entity vocabulary and corpus size. In this paper, we firstly propose Generative Entity Set Expansion (GenExpan) framework, which utilizes a generative pre-trained auto-regressive LLM to accomplish ESE task. Specifically, a prefix tree is employed to guarantee the validity of entity generation, and automatically generated class names are adopted to guide the model to generate target entities. Moreover, we propose Knowledge Calibration and Generative Ranking to further bridge the gap between generic knowledge of the LLM and the goal of ESE task. For efficiency, expansion time consumed by GenExpan is independent of entity vocabulary and corpus size, and GenExpan achieves an average 600% speedup compared to strong baselines. For expansion effectiveness, our framework outperforms previous state-of-the-art ESE methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shulin Huang (12 papers)
  2. Shirong Ma (23 papers)
  3. Yangning Li (49 papers)
  4. Yinghui Li (65 papers)
  5. Hai-Tao Zheng (94 papers)
Citations (2)