Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Contrastive Learning with Heterogeneous Similarity for Distribution Shifts (2304.03440v1)

Published 7 Apr 2023 in cs.LG and stat.ML

Abstract: Distribution shifts are problems where the distribution of data changes between training and testing, which can significantly degrade the performance of a model deployed in the real world. Recent studies suggest that one reason for the degradation is a type of overfitting, and that proper regularization can mitigate the degradation, especially when using highly representative models such as neural networks. In this paper, we propose a new regularization using the supervised contrastive learning to prevent such overfitting and to train models that do not degrade their performance under the distribution shifts. We extend the cosine similarity in contrastive loss to a more general similarity measure and propose to use different parameters in the measure when comparing a sample to a positive or negative example, which is analytically shown to act as a kind of margin in contrastive loss. Experiments on benchmark datasets that emulate distribution shifts, including subpopulation shift and domain generalization, demonstrate the advantage of the proposed method over existing regularization methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.