Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decision-Focused Model-based Reinforcement Learning for Reward Transfer (2304.03365v3)

Published 6 Apr 2023 in cs.LG and cs.AI

Abstract: Model-based reinforcement learning (MBRL) provides a way to learn a transition model of the environment, which can then be used to plan personalized policies for different patient cohorts and to understand the dynamics involved in the decision-making process. However, standard MBRL algorithms are either sensitive to changes in the reward function or achieve suboptimal performance on the task when the transition model is restricted. Motivated by the need to use simple and interpretable models in critical domains such as healthcare, we propose a novel robust decision-focused (RDF) algorithm that learns a transition model that achieves high returns while being robust to changes in the reward function. We demonstrate our RDF algorithm can be used with several model classes and planning algorithms. We also provide theoretical and empirical evidence, on a variety of simulators and real patient data, that RDF can learn simple yet effective models that can be used to plan personalized policies.

Summary

We haven't generated a summary for this paper yet.