Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A matrix algebra approach to approximate Hessians (2304.03222v1)

Published 6 Apr 2023 in math.NA and cs.NA

Abstract: This work presents a novel matrix-based method for constructing an approximation Hessian using only function evaluations. The method requires less computational power than interpolation-based methods and is easy to implement in matrix-based programming languages such as MATLAB. As only function evaluations are required, the method is suitable for use in derivative-free algorithms. For reasonably structured sample sets, the method is proven to create an order-$1$ accurate approximation of the full Hessian. Under more specialized structures, the method is proved to yield order-$2$ accuracy. The undetermined case, where the number of sample points is less than required for full interpolation, is studied and error bounds are developed for the resulting partial Hessians.

Citations (4)

Summary

We haven't generated a summary for this paper yet.