Holographic Codes from Hyperinvariant Tensor Networks (2304.02732v2)
Abstract: Holographic quantum-error correcting codes are models of bulk/boundary dualities such as the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, where a higher-dimensional bulk geometry is associated with the code's logical degrees of freedom. Previous discrete holographic codes based on tensor networks have reproduced the general code properties expected from continuum AdS/CFT, such as complementary recovery. However, the boundary states of such tensor networks typically do not exhibit the expected correlation functions of CFT boundary states. In this work, we show that a new class of exact holographic codes, extending the previously proposed hyperinvariant tensor networks into quantum codes, produce the correct boundary correlation functions. This approach yields a dictionary between logical states in the bulk and the critical renormalization group flow of boundary states. Furthermore, these codes exhibit a state-dependent breakdown of complementary recovery as expected from AdS/CFT under small quantum gravity corrections.
- J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
- E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 .
- N. Bao and I. H. Kim, (2016), arXiv:1601.07616 [hep-th] .
- S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001 .
- A. Lewkowycz and J. Maldacena, JHEP 08, 090 (2013), arXiv:1304.4926 [hep-th] .
- N. Engelhardt and A. C. Wall, JHEP 01, 073 (2015), arXiv:1408.3203 [hep-th] .
- D. Harlow, Commun. Math. Phys. 354, 865 (2017), arXiv:1607.03901 [hep-th] .
- C. Akers and P. Rath, JHEP 05, 052 (2019), arXiv:1811.05171 [hep-th] .
- E. Gesteau, (2023), arXiv:2302.01938 [hep-th] .
- W. R. Kelly, JHEP 03, 153 (2017), arXiv:1610.00669 [hep-th] .
- T. Faulkner, (2020), arXiv:2008.04810 [hep-th] .
- C. Cao and B. Lackey, JHEP 05, 127 (2021), arXiv:2010.05960 [hep-th] .
- G. Evenbly, Phys. Rev. Lett. 119, 141602 (2017).
- M. Steinberg and J. Prior, Scientific Reports 12 (2022), 10.1038/s41598-021-04375-5.
- Z. Raissi, IEEE Access 8, 222439–222448 (2020).
- G. Vidal, Phys. Rev. Lett. 101, 110501 (2008), arXiv:quant-ph/0610099 .
- P. Hayden and G. Penington, JHEP 12, 007 (2019), arXiv:1807.06041 [hep-th] .
- M. Doroudiani and V. Karimipour, Physical Review A 102 (2020), 10.1103/physreva.102.012427.
- F. Pastawski and J. Preskill, Physical Review X 7, 021022 (2017).
- C. Cao, (2023), arXiv:2306.14996 [hep-th] .
- X.-L. Qi and Z. Yang, (2018), arXiv:1801.05289 [hep-th] .
- A. May, Quantum 6, 864 (2022), arXiv:2204.00908 [quant-ph] .
- K. Dolev and S. Cree, (2022), arXiv:2210.13500 [quant-ph] .
- M. Steinberg, R. Harris, A. Jahn, D. Elkouss, and S. Feld, “Quantum error correction with hyperinvariant codes,” in preparation (2023).