Gravitational waves from cosmic strings associated with pseudo-Nambu-Goldstone dark matter (2304.02506v3)
Abstract: We study stochastic gravitational waves from cosmic strings generated in an ultraviolet-complete model for pseudo-Nambu-Goldstone dark matter with a hidden $\mathrm{U(1)}$ gauge symmetry. The dark matter candidate in this model can naturally evade direct detection bounds and easily satisfy other phenomenological constraints. The bound on the dark matter lifetime implies an ultraviolet scale higher than $109~\mathrm{GeV}$. The spontaneous $\mathrm{U(1)}$ symmetry breaking at such a high scale would induce cosmic strings with high tension, resulting in a stochastic gravitational wave background with a high energy density. We investigate the constraints from current gravitational wave experiments as well as the future sensitivity. We find that most viable parameter points can be well studied in future gravitational wave experiments.
- PandaX-4T Collaboration, Y. Meng et al., “Dark Matter Search Results from the PandaX-4T Commissioning Run,” Phys. Rev. Lett. 127 (2021) 261802, arXiv:2107.13438 [hep-ex].
- LZ Collaboration, J. Aalbers et al., “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment,” arXiv:2207.03764 [hep-ex].
- XENON Collaboration, E. Aprile et al., “First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment,” arXiv:2303.14729 [hep-ex].
- G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175.
- J. L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Ann. Rev. Astron. Astrophys. 48 (2010) 495–545, arXiv:1003.0904 [astro-ph.CO].
- B.-L. Young, “A survey of dark matter and related topics in cosmology,” Front. Phys. (Beijing) 12 (2017) 121201. [Erratum: Front.Phys.(Beijing) 12, 121202 (2017)].
- C. Gross, O. Lebedev, and T. Toma, “Cancellation Mechanism for Dark-Matter–Nucleon Interaction,” Phys. Rev. Lett. 119 (2017) 191801, arXiv:1708.02253 [hep-ph].
- D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki, and R. Santos, “One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model,” JHEP 01 (2019) 138, arXiv:1810.06105 [hep-ph].
- K. Ishiwata and T. Toma, “Probing pseudo Nambu-Goldstone boson dark matter at loop level,” JHEP 12 (2018) 089, arXiv:1810.08139 [hep-ph].
- K. Huitu, N. Koivunen, O. Lebedev, S. Mondal, and T. Toma, “Probing pseudo-Goldstone dark matter at the LHC,” Phys. Rev. D 100 (2019) 015009, arXiv:1812.05952 [hep-ph].
- T. Alanne, M. Heikinheimo, V. Keus, N. Koivunen, and K. Tuominen, “Direct and indirect probes of Goldstone dark matter,” Phys. Rev. D 99 (2019) 075028, arXiv:1812.05996 [hep-ph].
- K. Kannike and M. Raidal, “Phase Transitions and Gravitational Wave Tests of Pseudo-Goldstone Dark Matter in the Softly Broken U(1) Scalar Singlet Model,” Phys. Rev. D 99 (2019) 115010, arXiv:1901.03333 [hep-ph].
- D. Karamitros, “Pseudo Nambu-Goldstone Dark Matter: Examples of Vanishing Direct Detection Cross Section,” Phys. Rev. D 99 (2019) 095036, arXiv:1901.09751 [hep-ph].
- J. M. Cline and T. Toma, “Pseudo-Goldstone dark matter confronts cosmic ray and collider anomalies,” Phys. Rev. D 100 (2019) 035023, arXiv:1906.02175 [hep-ph].
- X.-M. Jiang, C. Cai, Z.-H. Yu, Y.-P. Zeng, and H.-H. Zhang, “Pseudo-Nambu-Goldstone dark matter and two-Higgs-doublet models,” Phys. Rev. D 100 (2019) 075011, arXiv:1907.09684 [hep-ph].
- M. Ruhdorfer, E. Salvioni, and A. Weiler, “A Global View of the Off-Shell Higgs Portal,” SciPost Phys. 8 (2020) 027, arXiv:1910.04170 [hep-ph].
- C. Arina, A. Beniwal, C. Degrande, J. Heisig, and A. Scaffidi, “Global fit of pseudo-Nambu-Goldstone Dark Matter,” JHEP 04 (2020) 015, arXiv:1912.04008 [hep-ph].
- Y. Abe, T. Toma, and K. Tsumura, “Pseudo-Nambu-Goldstone dark matter from gauged U(1)B−L𝑈subscript1𝐵𝐿U(1)_{B-L}italic_U ( 1 ) start_POSTSUBSCRIPT italic_B - italic_L end_POSTSUBSCRIPT symmetry,” JHEP 05 (2020) 057, arXiv:2001.03954 [hep-ph].
- N. Okada, D. Raut, and Q. Shafi, “Pseudo-Goldstone dark matter in a gauged B−L𝐵𝐿B-Litalic_B - italic_L extended standard model,” Phys. Rev. D 103 (2021) 055024, arXiv:2001.05910 [hep-ph].
- S. Glaus, M. Mühlleitner, J. Müller, S. Patel, T. Römer, and R. Santos, “Electroweak Corrections in a Pseudo-Nambu Goldstone Dark Matter Model Revisited,” JHEP 12 (2020) 034, arXiv:2008.12985 [hep-ph].
- Y. Abe, T. Toma, and K. Yoshioka, “Non-thermal Production of PNGB Dark Matter and Inflation,” JHEP 03 (2021) 130, arXiv:2012.10286 [hep-ph].
- Z. Zhang, C. Cai, X.-M. Jiang, Y.-L. Tang, Z.-H. Yu, and H.-H. Zhang, “Phase transition gravitational waves from pseudo-Nambu-Goldstone dark matter and two Higgs doublets,” JHEP 05 (2021) 160, arXiv:2102.01588 [hep-ph].
- Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, “Pseudo-Nambu-Goldstone dark matter model inspired by grand unification,” Phys. Rev. D 104 (2021) 035011, arXiv:2104.13523 [hep-ph].
- N. Okada, D. Raut, Q. Shafi, and A. Thapa, “Pseudo-Goldstone dark matter in SO(10),” Phys. Rev. D 104 (2021) 095002, arXiv:2105.03419 [hep-ph].
- T. Abe, “Early kinetic decoupling and a pseudo-Nambu-Goldstone dark matter model,” Phys. Rev. D 104 (2021) 035025, arXiv:2106.01956 [hep-ph].
- Y. Abe and T. Toma, “Direct detection of pseudo-Nambu-Goldstone dark matter with light mediator,” Phys. Lett. B 822 (2021) 136639, arXiv:2108.10647 [hep-ph].
- T. Biekötter and M. O. Olea-Romacho, “Reconciling Higgs physics and pseudo-Nambu-Goldstone dark matter in the S2HDM using a genetic algorithm,” JHEP 10 (2021) 215, arXiv:2108.10864 [hep-ph].
- Y.-P. Zeng, X. Xiao, and W. Wang, “Constraints on Pseudo-Nambu-Goldstone dark matter from direct detection experiment and neutron star reheating temperature,” Phys. Lett. B 824 (2022) 136822, arXiv:2108.11381 [hep-ph].
- C. Cai, Y.-P. Zeng, and H.-H. Zhang, “Cancellation mechanism of dark matter direct detection in Higgs-portal and vector-portal models,” JHEP 01 (2022) 117, arXiv:2109.11499 [hep-ph].
- R. N. Mohapatra and N. Okada, “Unified model for inflation, pseudo-Goldstone dark matter, neutrino mass, and baryogenesis,” Phys. Rev. D 105 (2022) 035024, arXiv:2112.02069 [hep-ph].
- N. Darvishi and B. Grzadkowski, “Pseudo-Goldstone dark matter model with CP violation,” JHEP 06 (2022) 092, arXiv:2204.04737 [hep-ph].
- T. Abe and Y. Hamada, “A model of pseudo-Nambu-Goldstone dark matter from a softly broken SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) global symmetry with a U(1)𝑈1U(1)italic_U ( 1 ) gauge symmetry,” arXiv:2205.11919 [hep-ph].
- T. Biekötter, P. Gabriel, M. O. Olea-Romacho, and R. Santos, “Direct detection of pseudo-Nambu-Goldstone dark matter in a two Higgs doublet plus singlet extension of the SM,” JHEP 10 (2022) 126, arXiv:2207.04973 [hep-ph].
- D.-Y. Liu, C. Cai, X.-M. Jiang, Z.-H. Yu, and H.-H. Zhang, “Ultraviolet completion of pseudo-Nambu-Goldstone dark matter with a hidden U(1) gauge symmetry,” JHEP 02 (2023) 104, arXiv:2208.06653 [hep-ph].
- H. Otsuka, T. Shimomura, K. Tsumura, Y. Uchida, and N. Yamatsu, “Pseudo-Nambu-Goldstone dark matter from non-Abelian gauge symmetry,” Phys. Rev. D 106 (2022) 115033, arXiv:2210.08696 [hep-ph].
- S. Gola, “Pseudo scalar dark matter in a generic U(1)Xsubscript1𝑋(1)_{X}( 1 ) start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT model,” arXiv:2212.04698 [hep-ph].
- X.-M. Jiang, C. Cai, Y.-H. Su, and H.-H. Zhang, “Freeze-in Production of Pseudo-Nambu-Goldstone Dark Matter Model with a Real Scalar,” arXiv:2302.02418 [hep-ph].
- R. N. Mohapatra and N. Okada, “Conformal B-L and Pseudo-Goldstone Dark Matter,” arXiv:2302.11072 [hep-ph].
- H. B. Nielsen and P. Olesen, “Vortex Line Models for Dual Strings,” Nucl. Phys. B 61 (1973) 45–61.
- T. W. B. Kibble, “Topology of Cosmic Domains and Strings,” J. Phys. A 9 (1976) 1387–1398.
- A. Vilenkin, “Gravitational radiation from cosmic strings,” Phys. Lett. B 107 (1981) 47–50.
- C. J. Hogan and M. J. Rees, “Gravitational interactions of cosmic strings,” Nature 311 (1984) 109–113.
- A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects. Cambridge University Press, 7, 2000.
- LISA Collaboration, P. Amaro-Seoane et al., “Laser Interferometer Space Antenna,” arXiv:1702.00786 [astro-ph.IM].
- TianQin Collaboration, J. Mei et al., “The TianQin project: current progress on science and technology,” PTEP 2021 (2021) 05A107, arXiv:2008.10332 [gr-qc].
- J. Cheng, E.-K. Li, Y.-M. Hu, Z.-C. Liang, J.-d. Zhang, and J. Mei, “Detecting the stochastic gravitational wave background with the TianQin detector,” Phys. Rev. D 106 (2022) 124027, arXiv:2208.11615 [gr-qc].
- W.-R. Hu and Y.-L. Wu, “The Taiji Program in Space for gravitational wave physics and the nature of gravity,” Natl. Sci. Rev. 4 (2017) 685–686.
- W. Buchmüller, V. Domcke, K. Kamada, and K. Schmitz, “The Gravitational Wave Spectrum from Cosmological B−L𝐵𝐿B-Litalic_B - italic_L Breaking,” JCAP 10 (2013) 003, arXiv:1305.3392 [hep-ph].
- J. A. Dror, T. Hiramatsu, K. Kohri, H. Murayama, and G. White, “Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves,” Phys. Rev. Lett. 124 (2020) 041804, arXiv:1908.03227 [hep-ph].
- Y. Gouttenoire, G. Servant, and P. Simakachorn, “Beyond the Standard Models with Cosmic Strings,” JCAP 07 (2020) 032, arXiv:1912.02569 [hep-ph].
- Y. Gouttenoire, G. Servant, and P. Simakachorn, “BSM with Cosmic Strings: Heavy, up to EeV mass, Unstable Particles,” JCAP 07 (2020) 016, arXiv:1912.03245 [hep-ph].
- W. Buchmuller, V. Domcke, H. Murayama, and K. Schmitz, “Probing the scale of grand unification with gravitational waves,” Phys. Lett. B 809 (2020) 135764, arXiv:1912.03695 [hep-ph].
- S. Blasi, V. Brdar, and K. Schmitz, “Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum,” Phys. Rev. Res. 2 (2020) 043321, arXiv:2004.02889 [hep-ph].
- S. F. King, S. Pascoli, J. Turner, and Y.-L. Zhou, “Gravitational Waves and Proton Decay: Complementary Windows into Grand Unified Theories,” Phys. Rev. Lett. 126 (2021) 021802, arXiv:2005.13549 [hep-ph].
- R. Zhou and L. Bian, “Gravitational waves from cosmic strings after a first-order phase transition,” Chin. Phys. C 46 (2022) 043104, arXiv:2006.13872 [hep-ph].
- B. Fornal and B. Shams Es Haghi, “Baryon and Lepton Number Violation from Gravitational Waves,” Phys. Rev. D 102 (2020) 115037, arXiv:2008.05111 [hep-ph].
- S. Chigusa, Y. Nakai, and J. Zheng, “Implications of gravitational waves for supersymmetric grand unification,” Phys. Rev. D 104 (2021) 035031, arXiv:2011.04090 [hep-ph].
- G. Lazarides, R. Maji, and Q. Shafi, “Cosmic strings, inflation, and gravity waves,” Phys. Rev. D 104 (2021) 095004, arXiv:2104.02016 [hep-ph].
- S. F. King, S. Pascoli, J. Turner, and Y.-L. Zhou, “Confronting SO(10) GUTs with proton decay and gravitational waves,” JHEP 10 (2021) 225, arXiv:2106.15634 [hep-ph].
- R. Samanta and S. Datta, “Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis,” JHEP 05 (2021) 211, arXiv:2009.13452 [hep-ph].
- M. A. Masoud, M. U. Rehman, and Q. Shafi, “Sneutrino tribrid inflation, metastable cosmic strings and gravitational waves,” JCAP 11 (2021) 022, arXiv:2107.09689 [hep-ph].
- L. Bian, X. Liu, and K.-P. Xie, “Probing superheavy dark matter with gravitational waves,” JHEP 11 (2021) 175, arXiv:2107.13112 [hep-ph].
- R. Samanta and S. Datta, “Probing leptogenesis and pre-BBN universe with gravitational waves spectral shapes,” JHEP 11 (2021) 017, arXiv:2108.08359 [hep-ph].
- D. I. Dunsky, A. Ghoshal, H. Murayama, Y. Sakakihara, and G. White, “GUTs, hybrid topological defects, and gravitational waves,” Phys. Rev. D 106 (2022) 075030, arXiv:2111.08750 [hep-ph].
- R. Samanta and F. R. Urban, “Testing super heavy dark matter from primordial black holes with gravitational waves,” JCAP 06 (2022) 017, arXiv:2112.04836 [hep-ph].
- R.-G. Cai, Z.-K. Guo, and J. Liu, “A New Picture of Cosmic String Evolution and Anisotropic Stochastic Gravitational-Wave Background,” arXiv:2112.10131 [astro-ph.CO].
- W. Ahmed, M. Junaid, S. Nasri, and U. Zubair, “Constraining the cosmic strings gravitational wave spectra in no-scale inflation with viable gravitino dark matter and nonthermal leptogenesis,” Phys. Rev. D 105 (2022) 115008, arXiv:2202.06216 [hep-ph].
- A. Afzal, W. Ahmed, M. U. Rehman, and Q. Shafi, “μ𝜇\muitalic_μ-hybrid inflation, gravitino dark matter, and stochastic gravitational wave background from cosmic strings,” Phys. Rev. D 105 (2022) 103539, arXiv:2202.07386 [hep-ph].
- D. Borah, S. Jyoti Das, A. K. Saha, and R. Samanta, “Probing WIMP dark matter via gravitational waves’ spectral shapes,” Phys. Rev. D 106 (2022) L011701, arXiv:2202.10474 [hep-ph].
- G. Lazarides, R. Maji, and Q. Shafi, “Gravitational waves from quasi-stable strings,” JCAP 08 (2022) 042, arXiv:2203.11204 [hep-ph].
- M. Yamada and K. Yonekura, “Cosmic strings from pure Yang–Mills theory,” Phys. Rev. D 106 (2022) 123515, arXiv:2204.13123 [hep-th].
- D. Borah, S. Jyoti Das, and R. Roshan, “Probing high scale seesaw and PBH generated dark matter via gravitational waves with multiple tilts,” arXiv:2208.04965 [hep-ph].
- R. Maji and Q. Shafi, “Monopoles, strings and gravitational waves in non-minimal inflation,” JCAP 03 (2023) 007, arXiv:2208.08137 [hep-ph].
- B. Fu, S. F. King, L. Marsili, S. Pascoli, J. Turner, and Y.-L. Zhou, “A predictive and testable unified theory of fermion masses, mixing and leptogenesis,” JHEP 11 (2022) 072, arXiv:2209.00021 [hep-ph].
- G. Lazarides, R. Maji, R. Roshan, and Q. Shafi, “A predictive SO(10) model,” JCAP 12 (2022) 009, arXiv:2210.03710 [hep-ph].
- M. Hindmarsh and J. Kume, “Multi-messenger constraints on Abelian-Higgs cosmic string networks,” arXiv:2210.06178 [astro-ph.CO].
- D. Borah, S. Jyoti Das, R. Samanta, and F. R. Urban, “PBH-infused seesaw origin of matter and unique gravitational waves,” JHEP 03 (2023) 127, arXiv:2211.15726 [hep-ph].
- S. Saad, “Probing Minimal Grand Unification through Gravitational Waves, Proton Decay, and Fermion Masses,” arXiv:2212.05291 [hep-ph].
- Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- K. S. Babu, C. F. Kolda, and J. March-Russell, “Implications of generalized Z - Z-prime mixing,” Phys. Rev. D 57 (1998) 6788–6792, arXiv:hep-ph/9710441.
- E. J. Chun, J.-C. Park, and S. Scopel, “Dark matter and a new gauge boson through kinetic mixing,” JHEP 02 (2011) 100, arXiv:1011.3300 [hep-ph].
- J. Lao, C. Cai, Z.-H. Yu, Y.-P. Zeng, and H.-H. Zhang, “Fermionic and scalar dark matter with hidden U(1)U1\mathrm{U}(1)roman_U ( 1 ) gauge interaction and kinetic mixing,” Phys. Rev. D 101 (2020) 095031, arXiv:2003.02516 [hep-ph].
- Z.-H. Yu, J.-M. Zheng, X.-J. Bi, Z. Li, D.-X. Yao, and H.-H. Zhang, “Constraining the interaction strength between dark matter and visible matter: II. scalar, vector and spin-3/2 dark matter,” Nucl. Phys. B 860 (2012) 115–151, arXiv:1112.6052 [hep-ph].
- J. R. Ellis, A. Ferstl, and K. A. Olive, “Reevaluation of the elastic scattering of supersymmetric dark matter,” Phys. Lett. B 481 (2000) 304–314, arXiv:hep-ph/0001005.
- M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, “New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT,” Phys. Rev. D 93 (2016) 103009, arXiv:1510.00389 [hep-ph].
- A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “FeynRules 2.0 - A complete toolbox for tree-level phenomenology,” Comput. Phys. Commun. 185 (2014) 2250–2300, arXiv:1310.1921 [hep-ph].
- G. Belanger, A. Mjallal, and A. Pukhov, “Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios,” Eur. Phys. J. C 81 (2021) 239, arXiv:2003.08621 [hep-ph].
- P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, “Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC,” JHEP 11 (2014) 039, arXiv:1403.1582 [hep-ph].
- P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, and G. Weiglein, “Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors,” Eur. Phys. J. C 75 (2015) 421, arXiv:1507.06706 [hep-ph].
- K. Kannike, “Vacuum Stability Conditions From Copositivity Criteria,” Eur. Phys. J. C 72 (2012) 2093, arXiv:1205.3781 [hep-ph].
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- MAGIC, Fermi-LAT Collaboration, M. L. Ahnen et al., “Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies,” JCAP 02 (2016) 039, arXiv:1601.06590 [astro-ph.HE].
- M. B. Hindmarsh and T. W. B. Kibble, “Cosmic strings,” Rept. Prog. Phys. 58 (1995) 477–562, arXiv:hep-ph/9411342.
- C. T. Hill, H. M. Hodges, and M. S. Turner, “Bosonic Superconducting Cosmic Strings,” Phys. Rev. D 37 (1988) 263.
- T. Damour and A. Vilenkin, “Gravitational wave bursts from cosmic strings,” Phys. Rev. Lett. 85 (2000) 3761–3764, arXiv:gr-qc/0004075.
- T. Vachaspati and A. Vilenkin, “Gravitational Radiation from Cosmic Strings,” Phys. Rev. D 31 (1985) 3052.
- J. J. Blanco-Pillado and K. D. Olum, “Stochastic gravitational wave background from smoothed cosmic string loops,” Phys. Rev. D 96 (2017) 104046, arXiv:1709.02693 [astro-ph.CO].
- P. Binetruy, A. Bohe, C. Caprini, and J.-F. Dufaux, “Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources,” JCAP 06 (2012) 027, arXiv:1201.0983 [gr-qc].
- J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, “The number of cosmic string loops,” Phys. Rev. D 89 (2014) 023512, arXiv:1309.6637 [astro-ph.CO].
- J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, “Large parallel cosmic string simulations: New results on loop production,” Phys. Rev. D 83 (2011) 083514, arXiv:1101.5173 [astro-ph.CO].
- L. Lorenz, C. Ringeval, and M. Sakellariadou, “Cosmic string loop distribution on all length scales and at any redshift,” JCAP 10 (2010) 003, arXiv:1006.0931 [astro-ph.CO].
- C. Ringeval and T. Suyama, “Stochastic gravitational waves from cosmic string loops in scaling,” JCAP 12 (2017) 027, arXiv:1709.03845 [astro-ph.CO].
- J. Polchinski and J. V. Rocha, “Analytic study of small scale structure on cosmic strings,” Phys. Rev. D 74 (2006) 083504, arXiv:hep-ph/0606205.
- J. Polchinski and J. V. Rocha, “Cosmic string structure at the gravitational radiation scale,” Phys. Rev. D 75 (2007) 123503, arXiv:gr-qc/0702055.
- C. Ringeval, M. Sakellariadou, and F. Bouchet, “Cosmological evolution of cosmic string loops,” JCAP 02 (2007) 023, arXiv:astro-ph/0511646.
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Constraints on cosmic strings using data from the first Advanced LIGO observing run,” Phys. Rev. D 97 (2018) 102002, arXiv:1712.01168 [gr-qc].
- P. Auclair et al., “Probing the gravitational wave background from cosmic strings with LISA,” JCAP 04 (2020) 034, arXiv:1909.00819 [astro-ph.CO].
- L. Lentati et al., “European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background,” Mon. Not. Roy. Astron. Soc. 453 (2015) 2576–2598, arXiv:1504.03692 [astro-ph.CO].
- NANOGRAV Collaboration, Z. Arzoumanian et al., “The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background,” Astrophys. J. 859 (2018) 47, arXiv:1801.02617 [astro-ph.HE].
- R. M. Shannon et al., “Gravitational waves from binary supermassive black holes missing in pulsar observations,” Science 349 (2015) 1522–1525, arXiv:1509.07320 [astro-ph.CO].
- K. Schmitz, “New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions,” JHEP 01 (2021) 097, arXiv:2002.04615 [hep-ph].
- G. Hobbs et al., “The international pulsar timing array project: using pulsars as a gravitational wave detector,” Class. Quant. Grav. 27 (2010) 084013, arXiv:0911.5206 [astro-ph.SR].
- G. Janssen et al., “Gravitational wave astronomy with the SKA,” PoS AASKA14 (2015) 037, arXiv:1501.00127 [astro-ph.IM].
- KAGRA, LIGO Scientific, Virgo, VIRGO Collaboration, B. P. Abbott et al., “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Rev. Rel. 21 (2018) 3, arXiv:1304.0670 [gr-qc].
- LIGO Scientific Collaboration, B. P. Abbott et al., “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Class. Quant. Grav. 34 (2017) 044001, arXiv:1607.08697 [astro-ph.IM].
- Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J.-d. Zhang, and J. Mei, “Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background,” Phys. Rev. D 105 (2022) 022001, arXiv:2107.08643 [astro-ph.CO].
- W.-H. Ruan, Z.-K. Guo, R.-G. Cai, and Y.-Z. Zhang, “Taiji program: Gravitational-wave sources,” Int. J. Mod. Phys. A 35 (2020) 2050075, arXiv:1807.09495 [gr-qc].
- LIGO Scientific, Virgo, KAGRA Collaboration, R. Abbott et al., “Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run,” Phys. Rev. Lett. 126 (2021) 241102, arXiv:2101.12248 [gr-qc].
- L. Bian, J. Shu, B. Wang, Q. Yuan, and J. Zong, “Searching for cosmic string induced stochastic gravitational wave background with the Parkes Pulsar Timing Array,” Phys. Rev. D 106 (2022) L101301, arXiv:2205.07293 [hep-ph].
- Z.-C. Chen, Y.-M. Wu, and Q.-G. Huang, “Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release,” Astrophys. J. 936 (2022) 20, arXiv:2205.07194 [astro-ph.CO].
- E. Thrane and J. D. Romano, “Sensitivity curves for searches for gravitational-wave backgrounds,” Phys. Rev. D 88 (2013) 124032, arXiv:1310.5300 [astro-ph.IM].
- S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, and J. Silk, “Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments,” Phys. Rev. D 87 (2013) 023522, arXiv:1210.2829 [astro-ph.CO]. [Erratum: Phys.Rev.D 87, 069903 (2013)].
- NANOGrav Collaboration, Z. Arzoumanian et al., “The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background,” Astrophys. J. Lett. 905 (2020) L34, arXiv:2009.04496 [astro-ph.HE].
- J. Ellis and M. Lewicki, “Cosmic String Interpretation of NANOGrav Pulsar Timing Data,” Phys. Rev. Lett. 126 (2021) 041304, arXiv:2009.06555 [astro-ph.CO].