Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence (2304.01950v2)

Published 1 Apr 2023 in cs.LG, cs.AI, cs.CV, and cs.DC

Abstract: Federated learning-assisted edge intelligence enables privacy protection in modern intelligent services. However, not independent and identically distributed (non-IID) distribution among edge clients can impair the local model performance. The existing single prototype-based strategy represents a class by using the mean of the feature space. However, feature spaces are usually not clustered, and a single prototype may not represent a class well. Motivated by this, this paper proposes a multi-prototype federated contrastive learning approach (MP-FedCL) which demonstrates the effectiveness of using a multi-prototype strategy over a single-prototype under non-IID settings, including both label and feature skewness. Specifically, a multi-prototype computation strategy based on \textit{k-means} is first proposed to capture different embedding representations for each class space, using multiple prototypes ($k$ centroids) to represent a class in the embedding space. In each global round, the computed multiple prototypes and their respective model parameters are sent to the edge server for aggregation into a global prototype pool, which is then sent back to all clients to guide their local training. Finally, local training for each client minimizes their own supervised learning tasks and learns from shared prototypes in the global prototype pool through supervised contrastive learning, which encourages them to learn knowledge related to their own class from others and reduces the absorption of unrelated knowledge in each global iteration. Experimental results on MNIST, Digit-5, Office-10, and DomainNet show that our method outperforms multiple baselines, with an average test accuracy improvement of about 4.6\% and 10.4\% under feature and label non-IID distributions, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R. Ahmed, O. Kaiwartya, and A. James-Taylor, “Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4049–4062, 2018.
  2. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.
  3. S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge intelligence: The confluence of edge computing and artificial intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–7469, 2020.
  4. M. Magdziarczyk, “Right to be forgotten in light of regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec,” in 6th International Multidisciplinary Scientific Conference on Social Sciences and Art Sgem 2019, 2019, pp. 177–184.
  5. H. Wu and P. Wang, “Node selection toward faster convergence for federated learning on non-iid data,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 5, pp. 3099–3111, 2022.
  6. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  7. J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp. 2204–2239, 2019.
  8. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
  9. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” Proceedings of Machine learning and systems, vol. 2, pp. 429–450, 2020.
  10. J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu, “Federated learning with label distribution skew via logits calibration,” in International Conference on Machine Learning.   PMLR, 2022, pp. 26 311–26 329.
  11. G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center federated learning: clients clustering for better personalization,” World Wide Web, vol. 26, no. 1, pp. 481–500, 2023.
  12. Y. Qiao, M. S. Munir, A. Adhikary, A. D. Raha, and C. S. Hong, “Cdfed: Contribution-based dynamic federated learning for managing system and statistical heterogeneity,” in NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium.   IEEE, 2023, pp. 1–5.
  13. C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning with moreau envelopes,” Advances in Neural Information Processing Systems, vol. 33, pp. 21 394–21 405, 2020.
  14. A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning: A meta-learning approach,” arXiv preprint arXiv:2002.07948, 2020.
  15. M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated learning with personalization layers,” arXiv preprint arXiv:1912.00818, 2019.
  16. Y. Qiao, M. S. Munir, A. Adhikary, A. D. Raha, S. H. Hong, and C. S. Hong, “A framework for multi-prototype based federated learning: Towards the edge intelligence,” in 2023 International Conference on Information Networking (ICOIN).   IEEE, 2023, pp. 134–139.
  17. H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.
  18. Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos: An experimental study,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE).   IEEE, 2022, pp. 965–978.
  19. Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang, “Fedproto: Federated prototype learning across heterogeneous clients,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8432–8440.
  20. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  21. M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and Y. Khazaeni, “Bayesian nonparametric federated learning of neural networks,” in International conference on machine learning.   PMLR, 2019, pp. 7252–7261.
  22. J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” Advances in neural information processing systems, vol. 30, 2017.
  23. R. Hou, Z. Chen, J. Chen, S. He, and Z. Zhou, “Imbalanced fault identification via embedding-augmented gaussian prototype network with meta-learning perspective,” Measurement Science and Technology, vol. 33, no. 5, p. 055102, 2022.
  24. Z. Kang, K. Grauman, and F. Sha, “Learning with whom to share in multi-task feature learning,” in Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 521–528.
  25. A. Quattoni, M. Collins, and T. Darrell, “Transfer learning for image classification with sparse prototype representations,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition.   IEEE, 2008, pp. 1–8.
  26. X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang, and Z. Zhang, “Fedproc: Prototypical contrastive federated learning on non-iid data,” Future Generation Computer Systems, vol. 143, pp. 93–104, 2023.
  27. Y. Tan, G. Long, J. Ma, L. Liu, T. Zhou, and J. Jiang, “Federated learning from pre-trained models: A contrastive learning approach,” Advances in Neural Information Processing Systems, vol. 35, pp. 19 332–19 344, 2022.
  28. Y. Qiao, S.-B. Park, S. M. Kang, and C. S. Hong, “Prototype helps federated learning: Towards faster convergence,” arXiv preprint arXiv:2303.12296, 2023.
  29. H. Huang, Z. Wu, W. Li, J. Huo, and Y. Gao, “Local descriptor-based multi-prototype network for few-shot learning,” Pattern Recognition, vol. 116, p. 107935, 2021.
  30. O. Rippel, M. Paluri, P. Dollar, and L. Bourdev, “Metric learning with adaptive density discrimination,” arXiv preprint arXiv:1511.05939, 2015.
  31. J. Deuschel, D. Firmbach, C. I. Geppert, M. Eckstein, A. Hartmann, V. Bruns, P. Kuritcyn, J. Dexl, D. Hartmann, D. Perrin et al., “Multi-prototype few-shot learning in histopathology,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 620–628.
  32. Y.-J. Liu, S. Qin, G. Feng, D. Niyato, Y. Sun, and J. Zhou, “Adaptive quantization based on ensemble distillation to support fl enabled edge intelligence,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 2194–2199.
  33. M. Beitollahi and N. Lu, “Federated learning over wireless networks: Challenges and solutions,” IEEE Internet of Things Journal, 2023.
  34. Y. Zhang, Y. Hu, X. Gao, D. Gong, Y. Guo, K. Gao, and W. Zhang, “An embedded vertical-federated feature selection algorithm based on particle swarm optimisation,” CAAI Transactions on Intelligence Technology, 2022.
  35. M. Alazab, S. P. RM, M. Parimala, P. K. R. Maddikunta, T. R. Gadekallu, and Q.-V. Pham, “Federated learning for cybersecurity: Concepts, challenges, and future directions,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3501–3509, 2021.
  36. A. Anaissi, B. Suleiman, and M. Naji, “Intelligent structural damage detection: a federated learning approach,” in Advances in Intelligent Data Analysis XIX: 19th International Symposium on Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 26–28, 2021, Proceedings 19.   Springer, 2021, pp. 155–170.
  37. J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objective inconsistency problem in heterogeneous federated optimization,” Advances in neural information processing systems, vol. 33, pp. 7611–7623, 2020.
  38. S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated learning,” in International Conference on Machine Learning.   PMLR, 2020, pp. 5132–5143.
  39. W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication overhead for federated learning,” in 2019 IEEE 39th international conference on distributed computing systems (ICDCS).   IEEE, 2019, pp. 954–964.
  40. X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Federated learning with additional mechanisms on clients to reduce communication costs,” arXiv preprint arXiv:1908.05891, 2019.
  41. N. Bouacida, J. Hou, H. Zang, and X. Liu, “Adaptive federated dropout: Improving communication efficiency and generalization for federated learning,” arXiv preprint arXiv:2011.04050, 2020.
  42. S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding the reach of federated learning by reducing client resource requirements,” arXiv preprint arXiv:1812.07210, 2018.
  43. Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “Fedat: a high-performance and communication-efficient federated learning system with asynchronous tiers,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2021, pp. 1–16.
  44. C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” arXiv preprint arXiv:1903.03934, 2019.
  45. Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online federated learning for edge devices with non-iid data,” in 2020 IEEE International Conference on Big Data (Big Data).   IEEE, 2020, pp. 15–24.
  46. J. Park, D.-J. Han, M. Choi, and J. Moon, “Handling both stragglers and adversaries for robust federated learning,” in ICML 2021 Workshop on Federated Learning for User Privacy and Data Confidentiality.   ICML Board, 2021.
  47. Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q. Quek, “Asynchronous federated learning over wireless communication networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 6961–6978, 2022.
  48. U. Michieli and P. Zanuttigh, “Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 1114–1124.
  49. G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong, “Dynamic network embedding survey,” Neurocomputing, vol. 472, pp. 212–223, 2022.
  50. J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal paraphrastic sentence embeddings,” arXiv preprint arXiv:1511.08198, 2015.
  51. U. Michieli and M. Ozay, “Prototype guided federated learning of visual feature representations,” arXiv preprint arXiv:2105.08982, 2021.
  52. Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 10 713–10 722.
  53. X. Li, T. Tian, Y. Liu, H. Yu, J. Cao, and Z. Ma, “Adaptive multi-prototype relation network,” in 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).   IEEE, 2020, pp. 1707–1712.
  54. G. Li, V. Jampani, L. Sevilla-Lara, D. Sun, J. Kim, and J. Kim, “Adaptive prototype learning and allocation for few-shot segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 8334–8343.
  55. C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer: Federated learning of large cnns at the edge,” Advances in Neural Information Processing Systems, vol. 33, pp. 14 068–14 080, 2020.
  56. W. Lou, Y. Xu, H. Xu, and Y. Liao, “Decentralized federated learning with data feature transmission and neighbor selection,” in 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS).   IEEE, 2023, pp. 688–695.
  57. X.-C. Li and D.-C. Zhan, “Fedrs: Federated learning with restricted softmax for label distribution non-iid data,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 995–1005.
  58. Z. Zhou, S. S. Azam, C. Brinton, and D. I. Inouye, “Efficient federated domain translation,” in The Eleventh International Conference on Learning Representations, 2022.
  59. M. Servetnyk, C. C. Fung, and Z. Han, “Unsupervised federated learning for unbalanced data,” in GLOBECOM 2020-2020 IEEE Global Communications Conference.   IEEE, 2020, pp. 1–6.
  60. Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, “Clustered sampling: Low-variance and improved representativity for clients selection in federated learning,” in International Conference on Machine Learning.   PMLR, 2021, pp. 3407–3416.
  61. X. Shuai, Y. Shen, S. Jiang, Z. Zhao, Z. Yan, and G. Xing, “Balancefl: Addressing class imbalance in long-tail federated learning,” in 2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).   IEEE, 2022, pp. 271–284.
  62. D. Pal, S. Bose, B. Banerjee, and Y. Jeppu, “Extreme value meta-learning for few-shot open-set recognition of hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  63. J. Zhou, J. Mei, H. Li, and Y. Hu, “Pmr-cnn: Prototype mixture r-cnn for few-shot object detection,” in 2023 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2023, pp. 1–7.
  64. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in neural information processing systems, vol. 33, pp. 18 661–18 673, 2020.
  65. M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of heterogeneity: Classifier calibration for federated learning with non-iid data,” Advances in Neural Information Processing Systems, vol. 34, pp. 5972–5984, 2021.
  66. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  67. K. Zhou, Y. Yang, T. Hospedales, and T. Xiang, “Learning to generate novel domains for domain generalization,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16.   Springer, 2020, pp. 561–578.
  68. B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsupervised domain adaptation,” in 2012 IEEE conference on computer vision and pattern recognition.   IEEE, 2012, pp. 2066–2073.
  69. X. Peng and K. Saenko, “Synthetic to real adaptation with generative correlation alignment networks,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).   IEEE, 2018, pp. 1982–1991.
  70. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  71. N. Dvornik, C. Schmid, and J. Mairal, “Selecting relevant features from a multi-domain representation for few-shot classification,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16.   Springer, 2020, pp. 769–786.
  72. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  73. S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii, “Local search methods for k-means with outliers,” Proceedings of the VLDB Endowment, vol. 10, no. 7, pp. 757–768, 2017.
  74. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering clusters in large spatial databases with noise,” in kdd, vol. 96, no. 34, 1996, pp. 226–231.
  75. X. He, Y. Jiang, B. Wang, H. Ji, and Z. Huang, “An image reconstruction method of capacitively coupled electrical impedance tomography (cceit) based on dbscan and image fusion,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.
  76. J. Hou, H. Gao, and X. Li, “Dsets-dbscan: A parameter-free clustering algorithm,” IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3182–3193, 2016.
  77. J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-time superpixel segmentation by dbscan clustering algorithm,” IEEE transactions on image processing, vol. 25, no. 12, pp. 5933–5942, 2016.
  78. E. mehdi Cherrat, R. Alaoui, and H. Bouzahir, “Improving of fingerprint segmentation images based on k-means and dbscan clustering,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 4, pp. 2425–2432, 2019.
  79. A. Harisinghaney, A. Dixit, S. Gupta, and A. Arora, “Text and image based spam email classification using knn, naïve bayes and reverse dbscan algorithm,” in 2014 International Conference on Reliability Optimization and Information Technology (ICROIT).   IEEE, 2014, pp. 153–155.
Citations (21)

Summary

We haven't generated a summary for this paper yet.