Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Class Feature Augmentation for Class Incremental Learning (2304.01899v4)

Published 4 Apr 2023 in cs.CV and cs.LG

Abstract: We propose a novel class incremental learning approach by incorporating a feature augmentation technique motivated by adversarial attacks. We employ a classifier learned in the past to complement training examples rather than simply play a role as a teacher for knowledge distillation towards subsequent models. The proposed approach has a unique perspective to utilize the previous knowledge in class incremental learning since it augments features of arbitrary target classes using examples in other classes via adversarial attacks on a previously learned classifier. By allowing the cross-class feature augmentations, each class in the old tasks conveniently populates samples in the feature space, which alleviates the collapse of the decision boundaries caused by sample deficiency for the previous tasks, especially when the number of stored exemplars is small. This idea can be easily incorporated into existing class incremental learning algorithms without any architecture modification. Extensive experiments on the standard benchmarks show that our method consistently outperforms existing class incremental learning methods by significant margins in various scenarios, especially under an environment with an extremely limited memory budget.

Citations (2)

Summary

We haven't generated a summary for this paper yet.