Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Stable and Robust Linear Parameter-Varying State-Space Models (2304.01828v2)

Published 4 Apr 2023 in eess.SY, cs.LG, and cs.SY

Abstract: This paper presents two direct parameterizations of stable and robust linear parameter-varying state-space (LPV-SS) models. The model parametrizations guarantee a priori that for all parameter values during training, the allowed models are stable in the contraction sense or have their Lipschitz constant bounded by a user-defined value $\gamma$. Furthermore, since the parametrizations are direct, the models can be trained using unconstrained optimization. The fact that the trained models are of the LPV-SS class makes them useful for, e.g., further convex analysis or controller design. The effectiveness of the approach is demonstrated on an LPV identification problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.