Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Stopping via Distribution Regression: a Higher Rank Signature Approach (2304.01479v1)

Published 4 Apr 2023 in math.PR

Abstract: Distribution Regression on path-space refers to the task of learning functions mapping the law of a stochastic process to a scalar target. The learning procedure based on the notion of path-signature, i.e. a classical transform from rough path theory, was widely used to approximate weakly continuous functionals, such as the pricing functionals of path--dependent options' payoffs. However, this approach fails for Optimal Stopping Problems arising from mathematical finance, such as the pricing of American options, because the corresponding value functions are in general discontinuous with respect to the weak topology. In this paper we develop a rigorous mathematical framework to resolve this issue by recasting an Optimal Stopping Problem as a higher order kernel mean embedding regression based on the notions of higher rank signatures of measure--valued paths and adapted topologies. The core computational component of our algorithm consists in solving a family of two--dimensional hyperbolic PDEs.

Citations (10)

Summary

We haven't generated a summary for this paper yet.