Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-level Protocol for Mechanistic Reaction Studies Using Semi-local Fitted Potential Energy Surfaces (2304.00942v2)

Published 3 Apr 2023 in physics.chem-ph and quant-ph

Abstract: In this work, we propose a multi-scale protocol for routine theoretical studies of chemical reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the Nudged-Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalculated at the more accurate electronic structure theory for a set of points on the path are fitted with a machine-learning technique (in our case symmetric gradient domain machine learning or sGDML) to produce a semi-local reactive Potential Energy Surface (PES), embracing reactants, products and transition state (TS) regions. This approach has been successfully applied to a unimolecular (Bergman cyclization of enediyne) and a bimolecular (S$_\text{N}$2 substitution) reaction. In particular, we demonstrate that with only 50 to 150 energy-force evaluations with the accurate reference methods (here CASSCF and CCSD) it is possible to construct a semi-local PES giving qualitative agreement for stationary-point geometries, intrinsic reaction-coordinates and barriers. Furthermore, we find a qualitative agreement in vibrational frequencies and reaction rate coefficients. The key aspect of the method's performance is its multi-scale nature, which not only saves computational effort but also allows extracting meaningful information along the reaction path, characterized by zero gradients in all but one direction. Agnostic to the nature of the TS and computationally economic, the protocol can be readily automated and routinely used for mechanistic reaction studies.

Summary

We haven't generated a summary for this paper yet.