Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Intrinsic Framework of Information Retrieval Evaluation Measures (2304.00615v1)

Published 2 Apr 2023 in cs.IR

Abstract: Information retrieval (IR) evaluation measures are cornerstones for determining the suitability and task performance efficiency of retrieval systems. Their metric and scale properties enable to compare one system against another to establish differences or similarities. Based on the representational theory of measurement, this paper determines these properties by exploiting the information contained in a retrieval measure itself. It establishes the intrinsic framework of a retrieval measure, which is the common scenario when the domain set is not explicitly specified. A method to determine the metric and scale properties of any retrieval measure is provided, requiring knowledge of only some of its attained values. The method establishes three main categories of retrieval measures according to their intrinsic properties. Some common user-oriented and system-oriented evaluation measures are classified according to the presented taxonomy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.